当前位置:首页 > > TsinghuaJoking
[导读]MOS管的米勒效应会在高频开关电路中,延长开关频率、增加功耗、降低系统稳定性,可谓是臭名昭著,各大厂商都在不遗余力的减少米勒电容。

简 介: 本文对于 MOS 管工作在开关状态下的 Miller 效应的原因与现象进行了分析。巧妙的应用 Miller 效应可以实现电源的缓启动。
关键词 Miller_EffectMOS

01 Miller效应

一、简介

MOS管的米勒效应会在高频开关电路中,延长开关频率、增加功耗、降低系统稳定性,可谓是臭名昭著,各大厂商都在不遗余力的减少米勒电容。


下面波形是在博文 ZVS振荡电路工作原理分析[1] 中观察到振荡 MOS 管栅极电压与漏极电压波形。可以看到栅极电压在上升阶段具有一个平坦的小台阶。这就是弥勒效应所带来的 MOS 管驱动电压波形的变化。

▲ 图1.1.1  LTspice仿真ZVS振荡器电路图▲ 图1.1.1  ZVS振荡电路MOS管栅极电压波形

二、仿真波形

为了说明 MOS 管的 Miller 效应,下面在 LTspice 中搭建了最简单的 MOS 管开关电路。

▲ 图1.2.1 MOS管开关电路

下面给出了 MOS 管 M1 的漏极与栅极电压波形,可以清楚的看到栅极电压在上升与下降阶段都出现了小台阶。

▲ 图1.2.2 Miller效应仿真结果 R1=5kOhm

为了分析台阶产生的过程, 下图给出了仿真电路中 MOS 管的栅极电压与电流波形。

▲ 图1.2.3 MOS管栅极电压与电流波形

可以看到 MOS 管栅极电流包括三个阶段:

  • 阶段1:栅极电压快速上升,电流呈现先快后慢的电容充电过程;
  • 阶段2:栅极电压呈现平台,电流急剧线性增加;
  • 阶段3:栅极电压与电流都呈现电容充电过程;
▲ 图1.2.4 MOS管导通过程的三个阶段

三、Miller 原理说明

下图是一般 MOS 管三个电极之间的分布电容示意图。其中:Cgs称为GS寄生电容,Cgd称为GD寄生电容,输入电容Ciss=Cgs+Cgd,输出电容Coss=Cgd+Cds,反向传输电容Crss=Cgd,也叫米勒电容。

▲ 图1.3.1 MOS管分布电容

米勒效应的罪魁祸首就是米勒电容,米勒效应指其输入输出之间的分布电容Cgd在反相放大的作用下,使得等效输入电容值放大的效应,米勒效应会形成米勒平台。

上面描述栅极电压、电流变化三个阶段分别是:

  • 阶段1:栅极电压从 0V 开始增加到 MOS 管导通过程。在此过程中, Miller 电容不起作用,是驱动电压通过栅极电阻给 Cgs 充电过程;
  • 阶段2:MOS 管导通,使得 MOS 管漏极电压下降,通过 Miller 电容将栅极充电电流吸收到漏极,造成 Cgs 充电减小,形成电压平台;
  • 阶段3:Miller 电容充满,栅极电流向 Cgs, Cgd 充电,直到充电结束。

那米勒效应的缺点是什么呢?下图显示了在电感负载下,由于 Miller 效应 MOS管的开关过程明显拉长了。MOS管的开启是一个从无到有的过程,MOS管D极和S极重叠时间越长,MOS管的导通损耗越大。因为有了米勒电容,有了米勒平台,MOS管的开启时间变长,MOS管的导通损耗必定会增大。

▲ 图1.3.2 MOS管在电感负载下的电流电压图

四、消除Miller效应

首先我们需要知道的一个点是:因为MOS管制造工艺,必定产生Cgd,也就是米勒电容必定存在,所以米勒效应不可避免。在上述 MOS 开关电路中,彻底消除Miller 效应是不可能的。但可以通过减少栅极电阻 Rg来减少 Miller 效应的 影响。下图是将栅极电阻 Rg 减少到 100Ω,可以看到栅极电压中的 Miller 平台就变得非常微弱了。

▲ 图1.3.4 减少MOS管栅极电阻 Rg=100Ω对应的栅极电压与电流波形

MOS管的开启可以看做是输入电压通过栅极电阻R1对寄生电容Cgs的充电过程,R1越小,Cgs充电越快,MOS管开启就越快,这是减小栅极电阻,米勒平台有改善的原因。

五、利用Miller效应

MOS 管的 Miller 也不是一无是处,也可以利用 Miller 效应,实现电路缓启动的目的。认为的增加 MOS 管的栅极电阻,并在 MOS 管的漏极与栅极之间并联大型电容,可以人为拉长 Miller 台阶。

在下面电路中,认为的增加了栅极电阻和漏极和栅极之间的并联电容,这样就可以大大延长 Miller台阶的过程。输出的波形形成了一个三角脉冲的形式。

▲ 图1.5.1 人为增加栅极电阻和漏栅极之间的电容▲ 图1.5.2 人为拉长 Miller 台阶过程

下面电路是利用了 PMOS 管上的 Miller 电容,实现了输出电压的缓启动,是用于一些电源上升速率有严格要求的场合。

▲ 图1.5.3 利用PMOS的Miller 效应完成电源的缓启动

结 ※

文对于 MOS 管工作在开关状态下的 Miller 效应的原因与现象进行了分析。巧妙的应用 Miller 效应可以实现电源的缓启动。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭