当前位置:首页 > > strongerHuang
[导读]有深入理解RTOS原理,或阅读过RTOS源码的同学应该知道:RTOS实现任务间通信通常是由一系列指针进行操作实现的。

有深入理解RTOS原理,或阅读过RTOS源码的同学应该知道:RTOS实现任务间通信通常是由一系列指针进行操作实现的。


任务间通信的“有效数据”,其实也是由指针指向一个“变量”或“数组”实现的。

1.信号量

信号量,本质是传递一个“事件”。比如:任务A完成发送数据,通过信号量通知任务B。


OSSemPost(EventSem_SendOK);

我们主要想传递完成发送数据这个“事件,进一步分析,其实就是一个“标志”或“变量”


2.队列

队列和信号量原理类似有点类似,只是这里是“变量”。比如:串口接收完成一帧数据,通过队列发送给任务B.


OSQPost(UARTRcvQueue, RcvBuf);

相比信号量,队列传递的数据量更大,队列传递的有效数据一般是“数组”。


还有邮箱,与队列类似,可以理解为“二维数组”。


写到这里,你会发现,不管信号量,还是队列,底层本质也是传递“变量”“数组”。


那么问题来了:RTOS任务间通信为什么不用全局变量?


这个问题比较常见,也看到在我的技术交流群有讨论,所以就简单来分享一下看法。


全局变量有什么问题?

RTOS任务间通信为什么不用全局变量?原因在于使用全局变量存在诸多弊端。

1.抢占问题
两个或多个任务,都要去“使用”同一个全局变量,如果不添加任何“互斥”措施,必定会存在抢占的问题。

2.代码规范问题
整个项目只有少数几个全局变量没什么问题,如果是整个项目有几十个,甚至几百个全局变量,你觉得这样的代码,后面好维护吗?

经过多次迭代,代码只会越来越难理解,越来越难阅读。

3.耦合性问题
全局变量会导致分层不合理与模块化编程相违背,你的全局变量没有归属,既不是任务A,也不是模块A,最终可能“任人宰割”导致“夭折”。

4.安全性问题
有一句话怎么说的呢,全局变量是项目的“罪魁祸首”,项目做大之后,一旦有小修改,可能就会引发大Bug.


全局变量还有很多弊端,这里就不一一描述了,总之一点:慎用全局变量

当然,以上描述的问题(弊端)都是基于项目中存在多个变量的情况,如果项目只有1、2个全局变量,这种不在本文讨论范围之内。

信号量、队列通信原理

大部分RTOS的信号量、队列都是使用指针、结构体、数组等,结合系统进行“封装”,使任务间通信更加有效安全,同时也遵循“高内聚低耦合”的原则。

比如ucos的信号量post:
INT8U OSSemPost (OS_EVENT *pevent){#if OS_CRITICAL_METHOD == 3u /* Allocate storage for CPU status register      */ OS_CPU_SR  cpu_sr = 0u;#endif #if OS_ARG_CHK_EN > 0u if (pevent == (OS_EVENT *)0) { /* Validate 'pevent'                             */ return (OS_ERR_PEVENT_NULL); }#endif if (pevent->OSEventType != OS_EVENT_TYPE_SEM) { /* Validate event block type                     */ return (OS_ERR_EVENT_TYPE); } OS_ENTER_CRITICAL(); if (pevent->OSEventGrp != 0u) { /* See if any task waiting for semaphore         */ /* Ready HPT waiting on event                    */ (void)OS_EventTaskRdy(pevent, (void *)0, OS_STAT_SEM, OS_STAT_PEND_OK); OS_EXIT_CRITICAL(); OS_Sched(); /* Find HPT ready to run                         */ return (OS_ERR_NONE); } if (pevent->OSEventCnt < 65535u) { /* Make sure semaphore will not overflow         */ pevent->OSEventCnt++; /* Increment semaphore count to register event   */ OS_EXIT_CRITICAL(); return (OS_ERR_NONE); } OS_EXIT_CRITICAL(); /* Semaphore value has reached its maximum       */ return (OS_ERR_SEM_OVF);}


我们需要传递的有效信息虽然只有一个变量,但它会做“临界区”管理,以及预判一些错误的情况等。


最后,RTOS源码也可以算是一个优秀的项目,特别是目前普及率比较高、装机量比较多的RTOS,比如µC/OS、FreeRTOS、RT-Thread、ThreadX等。


最最后,有时间的小伙伴可以阅读一下RTOS源码,RTOS内核我推荐µC/OS,阅读源码能让你掌握一些软件架构的知识,也能让你明白一些开发过程种常见的问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭