当前位置:首页 > 智能硬件 > 人工智能AI
[导读]AutoEncoder的基本思想是利用神经网络来做无监督学习,就是把样本的输入同时作为神经网络的输入和输出。本质上是希望学习到输入样本的表示(encoding)。早期AutoEncoder的研究主要是数据过于稀疏、数据高维导致计算复杂度高。比较早用神经网络做AutoEncoder的可以追溯到80年代的BPNN和MLP以及当时Hinton推崇的RBM。后来到了2000年以后还坚持在做的只剩下Hinton的RBM了。从2000年以后,随着神经网络的快速兴起,AutoEncoder也得到快速发展,基本上有几条线:稀疏AutoEncoder、噪音容忍AutoEncoder、卷积AutoEncoder、变分AutoEncoder。最新的进展是结合对抗思想的对抗AutoEncoder。

机器学习是研究怎样使用计算机模拟或实现人类学习活动的科学,是人工智能中最具智能特征,最前沿的研究领域之一。自20世纪80年代以来,机器学习作为实现人工智能的途径,在人工智能界引起了广泛的兴趣,特别是近十几年来,机器学习领域的研究工作发展很快,它已成为人工智能的重要课题之一。机器学习不仅在基于知识的系统中得到应用,而且在自然语言理解、非单调推理、机器视觉、模式识别等许多领域也得到了广泛应用。一个系统是否具有学习能力已成为是否具有“智能”的一个标志。机器学习的研究主要分为两类研究方向:第一类是传统机器学习的研究,该类研究主要是研究学习机制,注重探索模拟人的学习机制;第二类是大数据环境下机器学习的研究,该类研究主要是研究如何有效利用信息,注重从巨量数据中获取隐藏的、有效的、可理解的知识。

自编码器(autoencoder,AE)是一类在半监督学习和非监督学习中使用的人工神经网络(Artificial Neural Networks,ANNs),其功能是通过将输入信息作为学习目标,对输入信息进行表征学习(representation learning)。

自编码器包含编码器(encoder)和解码器(decoder)两部分。按学习范式,自编码器可以被分为收缩自编码器(contractive autoencoder)、正则自编码器(regularized autoencoder)和变分自编码器(Variational AutoEncoder,VAE),其中前两者是判别模型、后者是生成模型。按构筑类型,自编码器可以是前馈结构或递归结构的神经网络。

自编码器具有一般意义上表征学习算法的功能,被应用于降维(dimensionality reduction)和异常值检测(anomaly detection)。包含卷积层构筑的自编码器可被应用于计算机视觉问题,包括图像降噪(image denoising)[3]、神经风格迁移(neural style transfer)等。

自编码器在其研究早期是为解决表征学习中的“编码器问题(encoder problem)”,即基于神经网络的降维问题而提出的联结主义模型的学习算法。1985年,David H.Ackley、Geoffrey E.Hinton和Terrence J.Sejnowski在玻尔兹曼机上对自编码器算法进行了首次尝试,并通过模型权重对其表征学习能力进行了讨论。在1986年反向传播算法(Back-Propagation,BP)被正式提出后,自编码器算法作为BP的实现之一,即“自监督的反向传播(Self-supervised BP)”得到了研究,并在1987年被Jeffrey L.Elman和David Zipser用于语音数据的表征学习试验。自编码器作为一类神经网络结构(包含编码器和解码器两部分)的正式提出,来自1987年Yann LeCun发表的研究[5]。LeCun(1987)使用多层感知器(Multi-Layer Perceptron,MLP)构建了包含编码器和解码器的神经网络,并将其用于数据降噪。此外,在同一时期,Bourlard and Kamp(1988)使用MLP自编码器对数据降维进行的研究也得到了关注。1994年,Hinton和Richard S.Zemel通过提出“最小描述长度原理(Minimum Description Length principle,MDL)”构建了第一个基于自编码器的生成模型。

AutoEncoder的基本思想是利用神经网络来做无监督学习,就是把样本的输入同时作为神经网络的输入和输出。本质上是希望学习到输入样本的表示(encoding)。早期AutoEncoder的研究主要是数据过于稀疏、数据高维导致计算复杂度高。比较早用神经网络做AutoEncoder的可以追溯到80年代的BPNN和MLP以及当时Hinton推崇的RBM。后来到了2000年以后还坚持在做的只剩下Hinton的RBM了。从2000年以后,随着神经网络的快速兴起,AutoEncoder也得到快速发展,基本上有几条线:稀疏AutoEncoder、噪音容忍AutoEncoder、卷积AutoEncoder、变分AutoEncoder。最新的进展是结合对抗思想的对抗AutoEncoder。

稀疏AutoEncoder在学习输入样本表示的时候可以学习到相对比较稀疏的表示结果,这在Overcomplete AutoEncoder(就是学习得到高维表示)方法中尤为重要。代表性人物包括斯坦福大学的Andrew Ng和蒙特利尔的Yoshua Bengio教授。具体方法就是在原来的损失函数中加一个控制稀疏化的正则化项,通过控制优化过程来实现。

Denoising AutoEncoder的核心思想就是提高Encoder的鲁棒性,本质上就是避免可能的overfitting。一个办法是在输入中加入随机噪音(比如随机置0一些输入,或者随机把部分输入变为marked),这些思想后来在BERT等模型中也有广泛使用;另一个办法就是结合正则化的思想,比如在目标函数中加上eEncoder的Jacobian范数。Jacobian范数可以让学习到的特征表示更具有差异性。

著名研究者Jurgen Schmidhuber提出了基于卷积网络的AutoEncoder以及后来的LSTM AutoEncoder。Max Welling基于变分思想提出变分AutoEncoder方法VAE,这也是一个里程碑式的研究成果。后面很多研究者在这个工作上进行了扩展,包括info-VAE、beta-VAE和factorVAE等。最近还有人借鉴Ian Goodfellow等人提出的对抗建模思想提出Adversarial AutoEncoder,也取得了很好的效果。这和之前的噪音容忍的AE学习也有一定呼应。除了上面的思想,就是可以把上面的各种方法stacking起来。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭