当前位置:首页 > 厂商动态 > Microchip
[导读]2021年发布的Qi® 1.3标准在确保提高充电器对消费者的安全性方面发挥了很大作用。

新技术的出现受到了反对意见的阻碍,Qi感应式充电技术颇费时日才被广泛接受。因此,虽然Qi早在2010年就已发布,但又过了五年才占据主导地位。自那时起,无线充电联盟(WPC)对Qi进行了重大改进,但直到2021年初,联盟才增加了一项协议,从而使支持Qi的设备制造商能够验证充电器的身份及其对Qi规范的遵守情况。这项功能可以剔除那些可能损害甚至损毁其充电产品的充电器,因此无疑是Qi 1.3中最重要的新特性。

具体来说,Qi 1.3规范要求充电器制造商必须在无线充电器中嵌入称为“产品单元证书”的公钥基础架构(PKI),以使其能够对智能手机进行身份验证。该关键功能通过嵌入式方式实现,因为它采用最稳健但最基础的方法来提供身份验证,即构成库的安全元件,这些元件与单片机相邻,用于单独存储关键信息,与器件的主处理器隔离(图1)。此功能会极大提高绕过安全机制的难度,并且可以使用自己专用的独立处理能力和存储器,无需任何共享资源。

图1. Qi® 1.3标准要求必须进行安全配置

安全元件并非新鲜事物,它已在物联网、信用卡、支付系统和加密货币交易等领域广泛应用。例如,自2009年以来,现在广泛用于智能支付的近场通信(NFC)一直依赖于安全元件,从2019年起,几乎所有智能手机都集成了安全元件,因此,将这项技术添加到无线充电中并不算为时过早。

工作原理

身份验证过程比较复杂,但此过程是在后台进行的,不需要人为干预且用时不到一秒。手机是接收器,它位于充电器(在规范中被称为发射器)上。Qi 1.3规定必须进行单向身份验证,这意味着发射器必须以加密方式向手机证明其可信且被识别为WPC生态系统的安全成员(图2)。

图2. 通过CryptoAuthLib进行单向身份验证

如果没有经过身份验证,手机可以完全拒绝充电,更典型的情况是将接受的充电功率限制在5W而不是15W,从而导致充电缓慢。由于大多数智能手机同时运行多个应用程序,造成的结果是用户体验不佳,进而会对充电器制造商的声誉产生负面影响。

要实现高效、安全的身份验证,还必须采用安全的生产流程,并结合采用可形成安全存储子系统(SSS)(通常称为安全密钥存储器件或安全元件)的过程。Qi 1.3使用从充电器到手机的单向身份验证,在此期间,充电器必须以加密方式向手机证明其可信。如果身份验证失败,手机有两个选择:它可以将充电功率从最大15W降低到5W,或者拒绝充电器。

如果更深入地研究该过程,手机将要求充电器提供证书和签名,以验证其为具有私钥的WPC认证产品,并签署由手机发出的质询,证明其已获知机密信息且不曾泄露。Qi 1.3标准要求私钥必须由经过认证的SSS存储和保护。椭圆曲线数字签名算法和私钥都必须在同一物理安全边界内,以确保可信的身份验证。

SSS必须根据联合解析库(JIL)漏洞评分系统证明其保护加密密钥的稳健性,该系统于2000年代中期首次推出,用于提高智能卡的效率和安全性,现已成为其他许多需要安全功能的应用的稳健基准。它侧重于评估安全元件的存储强度,以确定其达到的特定JIL级别,JIL从五个方面对性能进行评级:

•破解算法所需的时长

•攻击者必须具备的技能水平

•要实现成功的攻击需要对评估对象(TOE)的了解程度(在此种情况下,TOE是指充电器)

•获得TOE样片所需的难度,以及需要的样片数

•一次成功攻击所需的设备类型

在充电器可供销售之前,需要采取其他步骤来保护充电器在生产时所具备的信任级别,目的是消除对私钥的暴露。要构建可信链,所有私钥都必须位于生产场地的硬件安全模块(HSM)中或充电器的SSS内。然后,必须确定这些私钥的产生、存储和构成可信链的方式。这是通过WPC所谓的密钥仪式实现的。完成后,现已通过加密方式建立了可信链,同时不会暴露给外部合约制造商或第三方。结果是,WPC、手机和充电器三者之间相互信任,这意味着WPC可以信任手机,反之亦然。

认证生态系统

由于可信链需要各方的参与,因此认证过程对参与其中的各方来说都是十分艰巨的任务,从单片机制造商到充电器本身的制造商,均是如此。为了解决这一问题,Microchip是率先将这一过程的所有要素结合起来的公司之一,旨在帮助设计人员开发产品,同时无需承担必须依赖多个来源的艰巨任务。Microchip采取的方法是通过可信平台提供公司安全元件的初始配置,以加快产品的上市时间。

Microchip是一家获得WPC许可的制造证书颁发机构,可提供预配置的安全存储子系统解决方案,以降低复杂性并缩短开发时间。此外,通过由WPC根证书颁发机构来处理整个密钥仪式,技术门槛也得到降低。作为完整的认证参考设计,可信平台包括应用MCU、Qi 1.3软件协议栈、具有支持加密库的安全存储子系统,以及面向汽车和消费类应用的配置服务。

可信平台包含一系列预先配置或完全可定制的安全元件。通过利用公司安装在Microchip工厂内的硬件安全模块(HSM),可在每个安全元件的边界内生成凭证。这些器件还配备了硬件和软件开发工具,使原型设计变得轻而易举,而且支持快速跟踪开发。

总结

对于像充电器这样看似简单的设备来说,这一切似乎有点夸张,但市场上充斥着数百种不同的充电器,在Qi 1.3之前,从来没有一种有效的方法可以验证它们是优质产品还是劣质产品,后者不仅可能损坏目标设备(智能手机),还可能引发更糟糕的结果。例如,如果充电器安装在车辆中,不当操作不仅会影响智能手机,还会影响车辆本身的某些部分。这种安全级别由来已久,但它将惠及所有相关方,尤其是消费者。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

现在市面上的普通充电器,输出电流一般都是固定的,它们通常是按照手机的续航时间和电池容量进行匹配,而不是考虑充电器的性能。

关键字: 可调电流 充电器 电池容量

电动汽车无线充电技术通过埋于地面下的供电导轨以高频交变磁场的形式将电能传输给运行在地面上一定范围内的车辆接收端电能拾取机构,进而给车载储能设备供电,可使电动汽车搭载少量电池组,延长其续航里程。

关键字: 电动车 无线充电 PFC

手机的无线充电原理是:充电底座负责将电流变成磁场,而且是一个不断变化的磁场。在手机的后盖下有一个线圈。

关键字: 手机 无线充电 磁场

在这篇文章中,小编将为大家带来Type-C充电器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: Type-C 充电器

开关电源适配器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 适配器 电源 开关电源 充电器

在电子设备日益普及的今天,电源适配器和充电器成为了我们日常生活中不可或缺的一部分。它们的主要功能都是为电子设备提供电源,但在实际使用中,开关电源适配器和充电器之间却存在着一些明显的区别。本文将从定义、工作原理、使用场景、...

关键字: 电子设备 电源适配器 充电器

我们这里说的电动汽车的无线充电是指为高压动力电池进行补能的大功率充电方式,这在新能源行业内已经不是什么新的东西了,也前前后后发展了很多年了,一直是不温不火,没有真正的发展起来。

关键字: 电动车 无线充电 充电

电磁感应:在无线充电系统中,通常由一个发射线圈和一个接收线圈组成。发射线圈中通入交变电流,根据法拉第电磁感应定律,接收线圈会产生感应电流。

关键字: 无线充电 电磁感应 充电

有线充电的劣势在于:同时充电的汽车数目有限,户外有线充电桩易受到侵害,占地也比较大。

关键字: 无线充电 户外有线 充电桩

当两个线圈靠近并处于同一频率时,它们之间会产生磁场共振,形成一个能量传输通道,从而将电能从充电基座无线传输到电动汽车的电池中。

关键字: 电动汽车 无线充电 电能
关闭