当前位置:首页 > > FPGA开源工作室


1 float IP的创建

搜索float双击Floating-point

1>Operation Selection 我们这里选择浮点数的加减法验证。

2>Precision of Inputs 我们选择单晶浮点数(Single),指数位宽Exponent Width 8bit 尾数位宽24 bit


3> Optimizations默认值

4 >Interface Options Latency选择1

2 浮点IP加减法的仿真验证

我们用python 自动生成100000个随机浮点数a和b以及a和b的相加或相减的结果。

python代码(float32(a)+float32(b)=float32(c)):


import bitstring, random span = 10000000iteration = 100000 def ieee754(flt): b = bitstring.BitArray(float=flt, length=32) return b with open("TestAdd.txt", "w") as f: for i in range(iteration): a = ieee754(random.uniform(-span, span)) b = ieee754(random.uniform(-span, span)) ab = ieee754(a.float + b.float) f.write(a.hex +"_" +  b.hex  + "_" + ab.hex + "\n")

浮点数加法验证python结果(部分):

4a953fc4_ca39838f_49e1f7f24b14900e_492290ab_4b1eb9194aedbfc3_4b146c7e_4b85a630ca4bb7f6_cb162f1d_cb491d1aca1ca77e_4ad19cc6_4a834907c96e52c3_c9c7778d_ca1f50774ab9c1cc_cb187d76_ca6e72404b18508e_4a8e5556_4b5f7b39cb103fa5_ca1765cf_cb3619194a09db98_ca2feb0d_c9183dd4ca626910_4a991e54_499fa730c983aaa6_4b0534fd_4ae97f5049e9e5f2_cad6005d_ca9b86e0491b3266_4a3e2d28_4a64f9c2ca935d66_caae8cbc_cb20f5114a150544_4a645ebe_4abcb201

3 xilinx float IP的加法验证

s_axis_a_tdata,s_axis_b_tdata和m_axis_result_tdata分别代表浮点操作的a,b和结果c。

s_axis_operation_tdata的最低位为0时为加法,为1时为减法运算。

m_axis_result_tvalid当次信号为1时,结果有效。

浮点数加减法仿真顶层Float_AddSub_tb:

`timescale 1ns / 1ps`define N_TESTS 100000module Float_AddSub_tb();  reg aclk;  reg s_axis_a_tvalid;  wire s_axis_a_tready;  reg [31 : 0] s_axis_a_tdata;  reg s_axis_b_tvalid;  wire s_axis_b_tready;  reg [31 : 0] s_axis_b_tdata;  reg s_axis_operation_tvalid;  wire s_axis_operation_tready;  reg [7 : 0] s_axis_operation_tdata;  wire m_axis_result_tvalid;  reg m_axis_result_tready;  wire [31 : 0] m_axis_result_tdata; reg [95:0] testVector [`N_TESTS-1:0];reg test_stop;reg [31:0] Expected_result;reg [31:0] Expected_result_r;integer mcd;integer test_n;integer pass;integer error;  initial begin aclk = 0; test_n = 0; pass =0; error = 0; test_stop =0; s_axis_a_tvalid = 0; s_axis_b_tvalid = 0; Expected_result = 0; Expected_result_r = 0; s_axis_a_tdata = 0; s_axis_b_tdata = 0; s_axis_operation_tvalid = 1; s_axis_operation_tdata =8'b0000_0000;//Add //s_axis_operation_tdata =8'b0000_0001;//Sub m_axis_result_tready = 1; $readmemh("TestAdd.txt", testVector);//Add mcd = $fopen("ResultsAdd.txt");//Add  //$readmemh("TestSub.txt", testVector);//Sub //mcd = $fopen("ResultsSub.txt");//Sub  repeat(100000) begin #10 test_n = test_n + 1'b1; end  wait(test_stop==1'b1)begin $fclose(mcd); $finish; endend  always #(5) aclk = ~aclk;  always @(posedge aclk) begin Expected_result_r <= Expected_result; end  always @(posedge aclk) begin #5 {s_axis_a_tdata,s_axis_b_tdata,Expected_result} = testVector[test_n]; s_axis_a_tvalid = 1; s_axis_b_tvalid = 1; //test_n <= test_n + 1'b1; #2; if ((m_axis_result_tvalid == 1) && (m_axis_result_tdata[31:11] == Expected_result_r[31:11])) begin $display ("TestPassed Test Number -> %d",test_n); pass = pass + 1'b1; end   if ((m_axis_result_tvalid == 1) && (m_axis_result_tdata[31:11] != Expected_result_r[31:11])) begin $fdisplay (mcd,"Test Failed Expected Result = %h, Obtained s_axis_b_tdata = %h, Test Number -> %d",Expected_result,s_axis_b_tdata,test_n); error = error + 1'b1; end  if (test_n >= `N_TESTS)  begin $fdisplay(mcd,"Completed %d tests, %d passed and %d fails.", test_n, pass, error); test_stop = 1'b1; end end //----------- Begin Cut here for INSTANTIATION Template ---// INST_TAGfloating_AddSUB your_instance_name ( .aclk(aclk), // input wire aclk .s_axis_a_tvalid(s_axis_a_tvalid), // input wire s_axis_a_tvalid .s_axis_a_tready(s_axis_a_tready), // output wire s_axis_a_tready .s_axis_a_tdata(s_axis_a_tdata), // input wire [31 : 0] s_axis_a_tdata .s_axis_b_tvalid(s_axis_b_tvalid), // input wire s_axis_b_tvalid .s_axis_b_tready(s_axis_b_tready), // output wire s_axis_b_tready .s_axis_b_tdata(s_axis_b_tdata), // input wire [31 : 0] s_axis_b_tdata .s_axis_operation_tvalid(s_axis_operation_tvalid), // input wire s_axis_operation_tvalid .s_axis_operation_tready(s_axis_operation_tready), // output wire s_axis_operation_tready .s_axis_operation_tdata(s_axis_operation_tdata), // input wire [7 : 0] s_axis_operation_tdata .m_axis_result_tvalid(m_axis_result_tvalid), // output wire m_axis_result_tvalid .m_axis_result_tready(m_axis_result_tready), // input wire m_axis_result_tready .m_axis_result_tdata(m_axis_result_tdata) // output wire [31 : 0] m_axis_result_tdata); endmodule


仿真结果:


Completed 100000 tests, 99999 passed and 0 fails.

通过仿真xilinx浮点ip的计算结果与python代码的输出结果一致,仿真成功。大家可以按照此方法仿真其他的算法中的计算公式或过程。首先利用C、matlab或者python等高级语言将算法的输入和输出一起打印出来,然后再读入到verilog的算法模型里面,通过打印出计算结果或误差来分析我们自己的算法的错误或者误差出现在哪里。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
关闭