当前位置:首页 > 模拟 > 模拟
[导读]摘 要:提出一种在不增加分数阶微分滤波器复杂度的前提下,能有效提高分数阶微分滤波器性能的方法。该方法利用几种基于典型微分算子的分数阶微分滤波器之间的互补性,通过相互内插结合的方式,用于提高IIR分数阶数字

摘 要:提出一种在不增加分数阶微分滤波器复杂度的前提下,能有效提高分数阶微分滤波器性能的方法。该方法利用几种基于典型微分算子的分数阶微分滤波器之间的互补性,通过相互内插结合的方式,用于提高IIR分数阶数字滤波器的性能。改进后的分数阶微分滤波器频率响应更接近理想分数阶微分滤波器,表明所提方法的有效性。
关键词:分数阶微积分;数字微分器;IIR滤波器;微分算子;连续分数扩充


0 引 言
    分数阶微积分是一个既古老又现代的话题。早在整数阶微积分产生的时候分数阶微积分就产生了,该问题曾被许多数学家,如Leibniz(1695),Euler(1738),Liouville(1850),Hardy和Littlewood(1925)等涉及和探究过。虽然分数阶微积分的研究难度很大,但近三百年在众多科学家的不懈努力下,分数阶微积分作为纯数学分支已经发展渐成体系,但其物理意义不明确,阻碍了分数维微积分的应用,目前在工程技术界中没有得到广泛应用。从Mandelbrot提出分形学说,将Rie—mann—Liouville分数阶微积分用以分析和研究分形媒介中的布朗运动以来,分数阶微积分才在许多学科,特别是在化学、电磁学、控制学、材料科学和力学中引起广泛关注并尝试着应用。随信息科学的变革和迅猛发展,分数阶运算在很多问题的处理过程中所拥有整数阶运算无可比拟的优点正逐渐显露出来。
    目前分数阶滤波器已经在分数阶控制器、信号处理、图像压缩和处理等领域得到成功应用。分数阶数字分数阶微分滤波器的设计和改进,正成为分数阶微积分研究领域的一个热点。数字微分滤波器的设计方法通常可以归为2类:第一种是线性相位F1R滤波器方法;另一种是IIR滤波器法。考虑到滤波器设计复杂度因素,FIR微分滤波器阶数会受到限制,影响了其频率响应对理想频率响应的逼近效果,因此这里考虑使用IIR分数阶微分滤波器来实现分数阶运算。
    IIR分数阶数字微分滤波器设计的重点是实现分数阶算子的离散化,即是找到一个函数Gv(z),使其频率响应无限逼近理想分数阶数字微分器的频率响应Hv(ω)=(jω)v。基本步骤可以归纳为:首先,找到频率响应接近理想一阶微分的算子;然后基于所选用的微分算子,推导出分数阶微分滤波器传输函数;最后通过各种展开方法把传输函数的分数阶形式转化为整数阶滤波器形式。完成分数阶展开的常用方法有幂级数展开(PSE)和连续分数扩充(CFE),其中连续分数扩充方法对函数的逼近更好,收敛更快。
    首先对Rectangular算子、Tustin算子、Simpson算子这几种典型微分算子通过连续分数扩充,得到相应的0.5阶微分滤波器频率响应。通过分析这几种算子的频率响应表明,基于这几种典型算子的分数阶微分滤波器各有优缺点和具有互补性,将这几种典型算子进行结合可得到更接近理想分数阶微分算子频率响应的算子。


1 典型IIR分数阶微分滤波器
1.1 基于Simpson算子的IIR分数阶数字微分滤波器
    Simpson微分算子表示为:

   
    GvSn(z)中v表示微分阶数;n表示滤波器阶数。图1是基于Simpson算子的O.5阶微分滤波器的频率响应曲线图。

    在此使用连续分数扩充(CFE)方法完成对上式的展开,这里简要介绍分数阶算子实现过程中使用到的CFE方法。对于任何一个函数D(z),可以用下面连续分数的形式来表示:

   
式中,系数ai,bi是关于变量z的有理函数或常数。只需要通过截断操作,就能得到有限阶逼近函数。下面列出T=0.001 s时,使用连续分数扩展(CFE)完成上式的展开,得到0.5阶微分的Simpson分数阶微分滤波器传递函数GvSn(z):


    通过对比和分析,从误差和计算复杂度两个方面均衡考虑分数阶微分滤波器阶数的选为5阶比较合适。因此这里滤波器的阶数都选为5阶。
1.2 基于Rectangular算子的IIR分数阶数字微分滤波器
    .Rectangular算子表示为:

   
    基于Rectangular算子的分数阶微分器传输函数可以写为:

   
    这里使用连续分数扩充(CFE)法将展开上式,实现对函数的有限阶逼近。下面列出T=0.001 s时,O.5阶微分Rectangular分数阶微分滤波器传递函数GvRn(z):


    GvRn(z)中v表示微分阶数;n表示滤波器阶数。
1.3 基于Tustin算子的IIR分数阶数字微分滤波器
    Tustin算子表示为:

   
    基于Tustin算子的分数阶微分器传输函数可以写为:

   
    使用连续分数扩充(CFE)方法将上式展开,完成对函数的有限阶逼近。下面列出了T=0.001 s时,0.5阶微分Tustin分数阶微分滤波器传递函数GvTn(z):

   
    GvTn中v表示微分阶数;n表示滤波器阶数。
    图2是基于典型Rectangular算子、Tustin算子和simpson算子的0.5阶微分滤波器的频率特性曲线,所实现的滤波器阶数都是5阶。从图2中可以看出3种滤波器在低频区域,幅度曲线还能与理想幅度一致,但随着频率增加,特别是在高频区域,误差迅速增大。

    从图2中可以看出,基于Rectangular滤波器的幅度特性最好,但相位特性明显比另两种算子的差。Tustin的优点在于其相位特性非常好,相位曲线绝大部分区域都与理想频率响应相位曲线重合。Tustin和Sirepson有很强互补性。因为两者在低频的表现都比较好,虽然在高频都有明显误差,但两者的幅度曲线分别位于理想频率曲线的上下两侧。因此,这里认为通过这3种算子的相互结合,可以得到一种新的、频率特性更好的微分算子。


2 通过内插结合形成新分数阶微分滤波器
2.1 基于Rectangular算子和Tustin算子内插结合的分数阶微分滤波器
    通过观察发现矩形(Rectangular)滤波器和梯形(Tustin)滤波器分别具有最好的幅频和相频特性,因此将这两种滤波器通过内插结合,可获得更好的近似理想积分器。
    由于微分和积分的互逆性,首先推导新的积分算子HA(z)。用下标A表示结合后积分器,用下标R表示矩形积分器,用下标T表示梯形积分器,其积分算子的传输函数由Rectangular算子和Tustin算子按3:1的比率结合获得。积分器传输函数如下所示:


    其零点不在单位圆内将零点z=一7映射到z=一1/7,通过乘以7对幅度进行相应补偿,获得最小相位积分器如下:


    下面是T=O.001 s时,使用该算子实现0.5阶微分的IIR分数阶微分滤波器传递函数GvAn(z):


2.2 基于Tustin算子和Simpson算子内插结合的分数阶微分滤波器
    同样通过观察发现Tustin算子和Simpson算子虽然在高频都有明显误差,但两者的幅度曲线分别位于理想频率曲线的上下两侧,以期通过内插结合相互抵消,而获得性能更好的滤波器。新的积分算子HB(z)传输函数通过梯形(Tustin)算子和辛普森(Simpson)算子按2:3比例结合获得。


圆内。为了构造最小相位系统,将零点r2映射到其倒数r1上。同时为了使幅度保持不变,引入补偿因子一r2。获得的积分算子如下:


    积分算子的极点是1和一1,在单位圆上,不满足系统稳定性,但经过后面连续分数扩充方法截断后,可以使极点都在单位圆内。
    下面是T=O.001 s时,使用新算子B实现0.5阶微分的IIR分数阶微分滤波器函数GvBn(z):


2.3 基于Rectangular算子和Simpson算子内插结合的分数阶微分滤波器
    同样将Rectangular算子和Simpson算子结合也可以形成新算子。新的积分算子HC(z)传输函数通过矩形(Rectangular)算子和辛普森(Simpson)算子按5:3比例结合获得:

相位系统,将零点r2映射到其倒数1/r2上。同时为了使幅度保持不变,引入补偿因子一r2。获得的积分算子
如下:


    积分算子的极点是1和一1,在单位圆上,不满足系统稳定性,但经过后面连续分数扩充方法截短后,可以使极点都在单位圆内。
    下面是T=0.001 s时,使用新算子C实现0.5阶微分的IIR分数阶微分滤波器函数GvCn(z):


    图3显示的是通过相互结合的3种新算子的分数阶微分滤波器频率响应。可以看出,新算子中A相比B和C具有更好的频率特性。其幅度特性曲线从低频到高频都基本接近理想频率响应曲线。新算子中A的相位特性随频率的增大,相位延迟近似线性增加,可以引入分数阶延迟滤波器来进一步改进相位特性。

3 结 语
    主要从频域角度出发,对分数阶微分IIR滤波器的设计以及实现进行了深入分析。分数阶微分IIR滤波器的实现有两个重要的步骤。首先,找到合适的微分算子,所选算子的频率响应逼近理想分数阶微分频率响应的程度直接影响到所实现滤波器的表现;其次,要使用合适的展开方法把传输函数从分数阶形式转化成整数阶滤波器的形式,连续分数扩充(CFE)方法是一种广泛使用并有良好效果的方法。这里通过将几种典型算子进行内插结合获得了一种整体更接近理想频率响应的算子,使用连续分数扩充(CFE)方法,完成了分数阶微分IIR滤波器的数字实现,通过新算子频率响应的对比分析,分数阶微分滤波器的性能获得了明显的提高。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED

上海2024年5月15日 /美通社/ -- 由生成式人工智能(AI)驱动的临床阶段生物医药科技公司英矽智能宣布,与复星医药(600196.SH;02196.HK)合作开发的潜在"全球首创"候选药物IS...

关键字: ISM BSP PC 人工智能

上海2024年5月13日 /美通社/ -- 5月8日,浦东新区国资委组织陆家嘴集团等9家区属企业与立邦中国召开合作交流会,旨在贯彻落实浦东新区区委、区政府工作要求,进一步放大进博会溢出带动效应,持续扩大区属企业与进博会重...

关键字: BSP 数字化 自动化立体仓库 智慧园区

上海2024年5月13日 /美通社/ -- 在数字化时代,高效的税务管理和ERP系统成为企业发展的关键。为了满足这一需求商应信息科技与Exact Software 易科软件就金四全电票税系统与ERP系统集成及商务合作建立...

关键字: AC 软件 BSP 数字化

北京2024年5月13日 /美通社/ -- 5月11日,鲲鹏昇腾开发者大会2024期间,华为举办"昇思AI框架及大模型技术论坛",软通动力数字基础设施与集成事业部总经理谢睿受邀出席、软通动力...

关键字: AI 模型 BSP 精度
关闭
关闭