当前位置:首页 > 模拟 > 模拟
[导读]随着电子技术的不断发展,数据的传输速度越来越快,高速时钟的应用日益广泛,如何保证时钟在高速跳变过程中的信号完整性、抖动、功耗等问题,已逐渐成为关注的问题。传统的时钟设计方法大多依靠经验和理论计算,但是随着时钟频率越来越高,时钟的电磁环境日趋复杂,时钟的传输线效应、过冲/欠冲、反射、振铃效应、趋肤效应都成为影响时钟设计的关键因素,只有使用现代科技手段,利用计算机的强大计算能力进行仿真才能够保证时钟电路设计成功。 HyperLynx是Mentor(Graphics开发的一款板级信号完整性的仿真工具。它可以进行损耗传输线的精确仿真,支持IBIS模型和HSPICE模型,可以使用过孔模型,允许多种激励源,可以分析信号的眼图、抖动以及EMC(电磁兼容性)辐射,用户界面简单直观。

引言

随着电子技术的不断发展,数据的传输速度越来越快,高速时钟的应用日益广泛,如何保证时钟在高速跳变过程中的信号完整性、抖动、功耗等问题,已逐渐成为关注的问题。传统的时钟设计方法大多依靠经验和理论计算,但是随着时钟频率越来越高,时钟的电磁环境日趋复杂,时钟的传输线效应、过冲/欠冲、反射、振铃效应、趋肤效应都成为影响时钟设计的关键因素,只有使用现代科技手段,利用计算机的强大计算能力进行仿真才能够保证时钟电路设计成功。 HyperLynx是Mentor(Graphics开发的一款板级信号完整性的仿真工具。它可以进行损耗传输线的精确仿真,支持IBIS模型和HSPICE模型,可以使用过孔模型,允许多种激励源,可以分析信号的眼图、抖动以及EMC(电磁兼容性)辐射,用户界面简单直观。

在目前的高速时钟的电平标准中,PECL(正电压射极耦合逻辑)是应用较广泛的一种,绝大多数高速ADC(A/D转换器)、DAc(D/A转换器)器件都支持这一时钟电平。本文叙述。PECL的原理和常见端接方式,结合在ADc系统中的应用,使用HyperLynx工具对设计后的电路进行仿真以验证设计思想。

l PECL工作原理

PECL由EcL(射极耦合逻辑)标准发展而来,在PECL电路中省去了负电源,较EcL电路更便于使用。PECL信号的摆幅相对EcL要小,这使得该逻辑更适合于高速数据的串行或并行连接。

一个标准的PECL输出极如图1所示。

差分对管的射极通过电流源连接到地,差分对管驱动一对射随器以提供正、负输出。输出射随器工作在正电源范围内,其电流始终存在,这样有利于提高开关速度。LVPECL(低电压。PECL)输出极的标准输出负载是接50 Ω电阻至Vcc一2 V的电平,在这种负载条件下,由于射随器的基极一射极有0.7 V压降,故输出+与输出一的静态电平典型值为Vcc一1.3 V,0.7 V压降加在50 Ω终端电阻上的电流为14 mA,可知输出+与输出一电流为14 mA。PECL结构的输出阻抗典型值为4 Ω~5 Ω,表明它有很强的驱动能力。2时钟电路设计

下面根据具体应用进行设计。首先从时钟的发送端(输出)和接收端(输入)各自的特性着手进行设计。

2.1时钟输出结构

时钟输出端由时钟扇出芯片ICS853011的一对输出引脚担任。ICS853011是一款将任意差分时钟扇出为两路PEcL电平的时钟扇出芯片,其原理见图2。

当其供电电压为3.3 V时,其输出电气特性如表l所示,输出高电平在2.295 V左右,输出低电平在1.52 V左右,输出峰峰值约为800 mV。

2.2时钟输入结构

ADS5463的时钟输入特性如图3所示。

由图3可看出时钟的输入幅度和共模电压与ADC信噪比的关系,当输入时钟为300 MHz时,只有峰峰值大于O.5 V、小于3.5 V,共模电压大于1 V、小于3.5 V才有最佳的信噪比指标,LVPECL电平的共模电压为Vcc一1.3 V=3.3 V-1.3 V=2 V,典型峰峰值700 mV,刚好满足ADS5463对时钟的要求。ADS5463在时钟输入端由内部电阻将时钟输人共模电压偏置到2.4 V,这与发送端的共模电压不同,故采用交流耦合是最好的方式。时钟电路初步设计见图4。
如图4所示,在ICS8530ll的每个输出端都并联了一个142 Ω的电阻到地,这个电阻的作用是:由于输出共模电压固定在Vcc一1.3 V=2 V,为了使输出电流维持在14 mA,故直流偏置电阻值选择2 V/14 mA=142 Ω,实际选取时可选择140~200 Ω。此时双端传输线特性阻抗为50 Ω。

3电路仿真

下面打开HyperLynx,将上述电路导入其中的LineSim工具下,该工具是HyperLynx的一个子工具,主要用来进行传输线的拓扑结构的仿真,可以对不同端接方式下的信号完整性进行分析。LineSim中的传输线模型构筑如图5所示。

图5中的传输线模型由发送端、线阻抗、路径上的相关器件与接收端组成。发送端和接收端的仿真模型是一种IBIS仿真文件。IBIS是对输入输出端口的电气特性快速准确建模的方法,是反映芯片驱动和接收电气特性的一种国际标准,它提供一种标准的文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合用于振荡和串扰等高频效应的计算与仿真。这里选择发送端为ICS85301l的模型,而接收端为ADS5463的模型,图中线路阻抗选择50 Ω,两个输出端并联到地的电阻为142 Ω,线路上的隔直电容为100 nF。

输入激励设置为.500 MHz、占空比为50的时钟源,在LineSim的数字示波器的仿真结果窗口中显示的波形如图6和图7所示。

图6和图7显示的是信号的差分值。可以看出,信号在发送端的失真还可以接受,但是在接收端的波形出现了较严重的振铃现象,其原因可能是:传输线阻抗和负载阻抗不匹配,导致信号发生反射,引起振铃现象;端接的拓扑结构不对,采用了错误的端接方式。 传输线理论中对于振铃现象原因的分析是:当传输线阻抗大于信号源阻抗时,信号源段反射系数为负值,这时将产生振铃现象。结合本电路分析,由于信号源阻抗是ICS853011内部的输出射随器的输出阻抗,约为4 Ω,而此时的传输线阻抗为50 Ω,过强的驱动能力导致负载端出现振铃现象。

消除振铃现象的方法有降低系统时钟频率、缩短传输线长度、采用正确的端接方式3种。由于本系统的时钟频率是固定的,而传输线长度又由PCB(印制电路板)的物理布局所限定,故只有采用正确的端接方式最为经济灵活。常见的端接方式有源匹配和负载匹配,下面介绍这两种方法的原理。

源匹配要求为输出端串联一个电阻,使源阻抗R。等于线路阻抗Z。,串联后,源反射系数等于0,从而消除了负载上的反射信号。换言之,串联的电阻吸收了发射的信号。本电路改进后如图8所示,在输出端串联了一个的电阻Rs,Rs=z0一R0=50-4=46 Ω,串联后的接收端波形见图9。从图9可看出,串联一个电阻后,接收端的波形得到了很大改善。但是这种方式稍微减小了接收波形的幅度值。但总的来说,信号还在ADC的接受范围内,不会对ADC性能有较大影响。


为了不衰减时钟信号的幅度,另一种较好的匹配方式是终端匹配。终端匹配的原理是在走线路径终端并联一个电阻RL在接收端负载上,使总的负载ZL=Z0,从而使反射系数
,以消除反射,在这里采用交流负载匹配,即由一个电阻RL串联一个电容CL然后并联到原接收端负载上,这样相比单接一个电阻最大的好处是可以降低直流功耗。改进的电路如图10所示。
图11所示为由Hyperlynx的仿真波形,可见这种方式也改善了接收端波形,同时减少了直流功耗。
在实际的时钟电路设计中,不仅需要考虑端接方式和器件值大小,还需要考虑器件的摆放,如端接电阻和必须尽可能靠近接收端、源电阻必须尽可能靠近发送端、器件与走线方向一致等;同时,布线必须严格按照差分规则,保证两差分线之间间距相等、两线线长相等,与周围高速数字线保持2倍以上的线间距,只有这样才能最终实现高性能的时钟设计。

4结束语

在高速时钟电路的设计中,信号完整性问题一直是困扰设计人员的问题,本文提出的PECIL高速时钟设计是在ADC设计中成功与否的关键因素。通过HyperLynx仿真,可以在最大程度上避免设计中的信号完整性问题。本时钟设计已在PcB实物上得到验证,取得了与仿真一致的效果,证明使用HyperLynx辅助设计人员进行关键时钟路径的设计是可行的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

香港2022年7月7日 /美通社/ -- 寿康集团有限公司(“寿康集团”或“本公司”及其附属公司,统称“本集团”;股份代号:0575.HK)旗下全资附属公司、并以香港为基地的人工智能创新公司及衰老与长寿深层生物...

关键字: 时钟 VI GE EV

文章转自知乎[MIPI自学笔记],作者IEEE1364https://zhuanlan.zhihu.com/p/926820471 MIPI概述MIPI是MobileIndustryProcessorInterface的...

关键字: MIPI LAN 数据流 时钟

狭义上的全通网络能够传输全部的入射功率,因此在任意频点上其反射系数为零,传输系数为1。广义的全通网络的幅频响应(传输系数的模)为某一固定值,而相频响应是非线性的。非线性的相频响应是全通网络的重要性质,也是与传输线最大的区...

关键字: 全通网络 传输线 电路

1、为设计执行综合时使用的各种设计约束是什么?1.1、创建时钟(频率、占空比)。1.2、定义输入端口的transition-time要求1.3、指定输出端口的负载值1.4、对于输入和输出,指定延迟值(输入延迟和输出延迟)...

关键字: 数字芯片 时钟 WIRE CK

如今,SoCs正变得越来越复杂,数据经常从一个时钟域传输到另一个时钟域。上图信号A由C1时钟域触发,被C2时钟域采样。根据这两个时钟之间的关系,在将数据从源时钟传输到目标时钟时,可能会出现不同类型的问题,并且这些问题的解...

关键字: 时钟 触发器 同步器 SETUP

本文主要介绍各种类型的跨时钟域问题。同步时钟是指具有已知相位和频率关系的时钟。这些时钟本质上是来自同一时钟源。根据相位和频率关系,可分为以下几类:具有相同频率和零相位差的时钟具有相同频率和固定相位差的时钟具有不同频率和可...

关键字: 异步 时钟 相位差 SETUP

跨时钟域验证可分为结构验证和功能验证两类。结构验证确保在需要的地方添加了适当的同步逻辑。功能验证确保已添加的逻辑实现了预期的功能。仅通过执行结构验证,就可以检测到许多CDC问题。这些检查比功能验证更简单、更快。因此,验证...

关键字: 时钟 数据传输 信号 TE

来源:射频百花谭规范很重要工作过的朋友肯定知道,公司里是很强调规范的,特别是对于大的设计(无论软件还是硬件),不按照规范走几乎是不可实现的。逻辑设计也是这样:如果不按规范做的话,过一个月后调试时发现有错,回头再看自己写的...

关键字: VERILOG 时钟 计数器 仿真验证

中断服务程序

关键字: 时钟 中断程序

首先通过按“校时、校分、校星期”等按键,校对好时间。 先检查时钟显示是否当前时间一致,如需重新校准,在按住“时钟”键的同时,分别按住“校星期”、“校时”、“校分”键,将时钟调到当前准确时间。

关键字: 自动开关定时器 时钟

模拟

31144 篇文章

关注

发布文章

编辑精选

技术子站

关闭