当前位置:首页 > 模拟 > 模拟
[导读]摘要:分压器是一种基本的电路模型,广泛应用于电子电路中。为了简化模拟电路的分析与计算,将分压器模型应用其中。采用理论分析与仿真实验相结合的方法,对三个典型模拟电路进行理论计算,并在同样的参数条件下,用

摘要:分压器是一种基本的电路模型,广泛应用于电子电路中。为了简化模拟电路的分析与计算,将分压器模型应用其中。采用理论分析与仿真实验相结合的方法,对三个典型模拟电路进行理论计算,并在同样的参数条件下,用Multisim软件进行计算机仿真实验。计算机仿真结果与理论分析结果吻和较好,表明分压器模型引入到模拟电路的分析中是有效可行的。
关键词:分压器;模拟电路;应用;仿真

    模拟电路是电类专业的一门技术基础课,其中电路的分析与计算是教学的重点和难点。在繁杂多变的电路中,分压器是一种基本的电路模型,广泛应用于电子电路中。很多模拟电路的分析与计算的关键就在于在一个具体的电路中找到分压器模型,并将分压公式应用其中。本文主要介绍了分压器模型在模拟电路中的三个典型分析与计算,并利用Multisim软件进行计算机仿真。

1 分压电路与分压器模型
    电阻的串联连接常用于分压,如图1(a)所示为分压电路的基本形式。




2 分压器模型应用
    分压器模型在模拟电路中的应用最典型的是三个例子,一是静态工作点(Q点)稳定的放大电路工作原理与Q点计算;二是深度负反馈条件下的闭环电压放大倍数估算;三是源电压放大倍数的计算。其中,第一、二两个电路中较容易直接找到分压器模型,可称为分压器模型的直接应用;第三个电路中无法直接找到分压器模型,但可通过等效的方法找到,可称为分压器模型的间接应用。
2.1 静态工作点稳定的放大电路
    基本的晶体管共射放大电路简单实用。但由于三极管是一种对温度十分敏感的元件,所以当温度变化时,三极管的Q点随之变化。这种变化将使得放大电路的动态范围减小,严重时产生饱和失真或截止失真。调整电路结构可以减小温度对放大电路Q点的影响,以保持放大电路技术性能的稳定。基极分压式单管共射放大电路就是一种结构比较简单,并能有效地保持Q点稳定的电路,如图2所示。


2.1.1 工作原理
    三极管T的静态基极电位UBQ由Vcc经电阻Rb1,Rb2分压得到,可以认为基本不受温度变化的影响,比较稳定。该电路的Q点稳定原理如下:当温度升高时,集电极电流ICQ增大,发射极电流IEQ也随之增大,致使发射极电位UEQ升高,则三极管发射结电压UBEQ=UBQ-UEQ将降低,由三极管的输入特性,基极电流IBQ减小,于是ICQ也随之减小,最终使Q点基本保持稳定。
    为保证UBQ基本稳定,要求流过分压电阻的电流IRb>>IBQ,通常取IRb=(5~10)IBQ,且使UBQ=(3~5)UBEQ。
2.1.2 静态分析计算与计算机仿真
    基极分压式放大电路的Q点(一般理论计算NPN管的UBEQ=0.7 V)计算通常按以下步骤进行:
   
   
    图2中取Vcc=12 V,Rb1=8 kΩ,Rb2=2 kΩ,Rc=2 kΩ,Re=800 Ω,RL=3 kΩ,C1=C2=50 μF,Ce=100 μF,三极管T的β=50,rbb'=300 Ω。用上述Q点计算公式(4)~(9)进行理论数值计算,并在Multisim软件中搭建仿真电路如图3所示,其中万用表XMM1~XMM6分别测量UBQ,UEQ,IEQ,ICQ,IBQ,UCEQ。理论计算与计算机仿真采用相同的参数,结果如表1所示。


    表1显示,Q点各参数的理论计算与计算机仿真值均有较好的一致性。
2.2 深度负反馈条件下的闭环电压放大倍数估算
    在放大电路中引入负反馈可以改善电路的性能,深度负反馈是指反馈深度|1+AF|>>1的情况。在此条件下,常利用近似相等关系式,即Xi≈Xf估算闭环电压放大倍数。
    在晶体管多级负反馈放大电路中,由于器件繁多,电路结构复杂,使得电路分析计算难度加大。图4所示为晶体管两级放大电路,反馈类型为电压串联负反馈,该电路闭环电压放大倍数的求解关键有两点。一是近似相等关系式的确定,二是分压器模型的应用。



              
    因此,求出Uo与Uf之间的关系就可以得到闭环电压放大倍数。图4中一条重要的支路Uo,Rf,Re1正是典型的分压器模型,所以有:
   
    用式(13)进行理论计算,并在Multisim软件中搭建仿真电路进行计算机仿真,理论计算与计算机仿真均用图4中所标注的参数。得到Auuf理论=21,Auuf仿真=17.5。因此,应用分压器模型进行近似计算是可行的。
2.3 源电压放大倍数的计算
    图2电路中,若考虑信号源内阻Rs,即输入端接成图5(a)所示情况,直接求解源电压放大倍数Aus难度较大。考虑放大电路存在输入电阻Ri,画出图2电路的等效电路如图5(b)所示。可以发现输入信号Ui是由信号源Us经电阻Rs,Ri分压得到。找到了这个分压器模型,源电压放大倍数Aus就迎刃而解了。具体过程如下:
   
   
   


    图5中取Rs=250 Ω,其他参数用上节取值。用式(15),式(16),式(18)进行理论数值计算,并在Multisim软件中搭建电路进行计算机仿真。理论计算与计算机仿真采用相同的参数,得到Au理论=62.305,Au仿真=58.003;Ri理论=601 Ω,Ri仿真=629 Ω;Aus理论=44.002,Aus仿真=41. 515。结果表明,放大电路各参数的理论计算与计算机仿真值均吻和较好,在源电压放大倍数的计算中引入分压器模型是有效可行的。

3 结语
    分压器是一种基本的电路模型,在模拟电路中应用广泛。静态工作点稳定放大电路的工作原理和Q点计算、深度负反馈条件下的闭环放大倍数估算属于分压器模型的直接应用;源电压放大倍数的计算属于分压器模型间接应用。本文对这三个典型应用作了分析与计算,并用Multisim软件进行计算机仿真实验。实验结果表明,电路各参数的理论计算与计算机仿真值均有较好的一致性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年5月20日 /美通社/ -- 2024年5月16日,世界知名的生命科学公司 Eppendorf 集团于第二十三届生物制品年会上成功举办了"疫路超越 推流出新"的产品发布会,正式推出大规模...

关键字: RF PEN BSP IMAC

北京2024年5月20日 /美通社/ -- 过去五年里,支付和收款方式日新月异,其发展和变化比过去五十年都要迅猛。从嵌入式数字商务的出现,到"一拍即付"的...

关键字: VI BSP PAY COM

华钦科技集团(纳斯达克代码: CLPS ,以下简称"华钦科技"或"集团")近日宣布致敬 IBM 大型机 60 载辉煌历程,并将继续实施集团大型机人才培养计划。

关键字: IBM BSP 研发中心 PS

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED

上海2024年5月15日 /美通社/ -- 由生成式人工智能(AI)驱动的临床阶段生物医药科技公司英矽智能宣布,与复星医药(600196.SH;02196.HK)合作开发的潜在"全球首创"候选药物IS...

关键字: ISM BSP PC 人工智能
关闭
关闭