当前位置:首页 > 模拟 > 模拟
[导读]在 DC 到低频传感器信号调节应用中,仅依靠仪表放大器的共模抑制比 (CMRR) 并不足以在恶劣的工业使用环境中提供稳健的噪声抑制。要想避免多余噪声信号的传播,对仪表放大器输入端低通滤波器中各组件进行正确的匹配和

在 DC 到低频传感器信号调节应用中,仅依靠仪表放大器的共模抑制比 (CMRR) 并不足以在恶劣的工业使用环境中提供稳健的噪声抑制。要想避免多余噪声信号的传播,对仪表放大器输入端低通滤波器中各组件进行正确的匹配和调节至关重要。最终,才能让内部电磁干扰/无线电频率干扰 (EMI/RFI) 滤波和 CMRR 共同作用,降低其他噪声,从而达到可以接受的信噪比 (SNR)。

例如,请思考图 1 所示低通滤波器实施。电阻传感器通过一个低通滤波器网络差动连接至一个高阻抗仪表放大器,而低通滤波器网络由 RSX 和 CCM 组成。理想情况下,如果每条输入支线的 CCM 都完全匹配,则两个输入端共有的噪声量将在到达 INA 输入端以前得到相应的降低。

图 1 共模输入滤波

共模滤波器电容 (Ccm) 完全匹配时,噪声几乎被彻底消除。图 2 显示了 TINA SPICE 仿真的这一结果,其将一个 100 mVpp、100 kHz 的共模误差信号注入到 INA333 输入端。

图 2 INA333 共模滤波的完全输入 RC 匹配举例仿真

这种方法存在的问题是现货电容都有一个 5% 到 10% 的典型容差,这就是说如果每条支线的 CCM 反向不匹配,总差动容差便会高达 20%。图 3 更好地表示了这种电容不匹配,同时还显示了电阻传感器输出端的共模噪声输入 (eN) 情况。

图 3 RC 不匹配和共模噪声注入共模滤波

这种输入不匹配 (∆C) 形成截止频率误差,使共模噪声 eN 差动进入 INA 输入,之后被增益输出,成为误差电压。方程式 1-3 显示了到达输入端的共模噪声量:

方程式 1

方程式2 2  方程式3

假设传感器信号 Vsensor的频率远低于所有共模滤波器的噪声截止频率(即fC ≥ 100*fsensor),并且 RS1 = RS2,则转换为差动噪声信号 (eIN) 并成为 VIN 组成部分的共模噪声信号 (eN)大小为:

方程式 4

方程式 4 进一步表明,通过向 INA333 注入一个 100 mVpp、100 kHz 共模误差信号,且1.6 kHz 滤波器截止频率 RC 不匹配为 10% 时,其所产生的误差如下:

图 4 共模滤波器 RC 不匹配引起的 INA333 输出误差仿真(增益为 101)

图 5 显示了一种更好且更常见的输入滤波方法,其改进是在仪表放大器输入之间添加了一个差动电容 Cdiff。

图 5 添加差动电容 (Cdiff) 提高共模噪声抑制效果

添加这种电容并没有彻底解决问题,因为必须按照如下两个标准对 Cdiff 进行调节:

1、差动截止频率必须足够高,以远离信号带宽,从而实现充分的滤波稳定。

2、差动截止频率必须要足够低,以将共模噪声降至可接受水平,让仪表放大器 CMRR 能够实现剩余噪声抑制,最终达到可以接受的 SNR。方程式 5 给出了进行这种调节的一般原则:

 方程式 5

图 6 显示了 VinP 和 VinN 曲线图与无 Cdiff 和 Cdiff = F 时两种频率的对比情况。请注意,没有差动电容时,INA333 的输出大小有差别。这种差别被放大至输出,成为最终降低 SNR 的噪声。Cdiff = F 时,VinP 和 VinN 之间的差最小。

图 6 Cdiff = 0 和 Cdiff = 1 F 时,VinP 和 VinN 的曲线图

图 7 显示了 Cdiff = F 时 INA333 输出的总噪声性能改善情况。

图 7 INA333 使用 Cdiff 时获得改善的噪声滤波仿真情况

总之,安装于仪表放大器前部的低通滤波器应该有一个差动电容,且其大小至少应比共模电容高 10 倍。这样,通过减小 Ccm 不匹配的影响,让共模噪声变为差动噪声,从而极大地提高滤波器的效率。

下次,我们将针对主/从系统中 I2S 时钟存在的一些难点为您释疑解惑,敬请期待。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2025年9月1日 /美通社/ -- 8月29日,由国际独立第三方检测、检验和认证机构德国莱茵TÜV大中华区(简称"TÜV莱茵")...

关键字: 工程师 REGULATION 基础知识 智能化

往期发布了基于小华HC32F334数字电源控制器的两路交错无桥图腾柱TCM PFC参考设计,TCM PFC以其全输入范围下软开关的优势越来越受到服务器电源以及通信电源的青睐。同时,两路交错无桥图腾柱CCM PFC因其EM...

关键字: 数字电源控制器 服务器 滤波器

滤波器是一种选频装置,允许特定频率的信号通过,同时抑制其他频率成分。这种功能在去除噪声和频谱分析中至关重要。滤波器,这一电子系统中的关键组件,在信号处理领域扮演着举足轻重的角色。本文旨在深入剖析两种典型滤波器的工作原理,...

关键字: 滤波器 射频技术

滤波器本质上是一种选频装置,其核心功能是让特定频率的信号顺畅通过,同时大幅衰减其他频率的信号。在测试装置中,这种选频功能被充分利用,以滤除干扰噪声或进行频谱分析,实现“去除杂波,精选信号”的目标。

关键字: 滤波器 高通滤波器

微电子产品的可靠性是评价其质量的关键指标。在微电子组装过程中,由于元器件的微小化和集成度的提高,对组装精度的要求也越来越高。因此,确保组装过程中的可靠性,对于提升产品的整体质量和客户满意度至关重要。

关键字: 微组装 组件

深入探索这一个由 ML 驱动的时域超级采样的实用方法

关键字: 机器学习 GPU 滤波器

EMI 滤波器,这一看似简单的电子元件,实则蕴含着高科技的智慧。它如同电子世界的 “清道夫”,主要应用于电源线和信号线上。其工作原理基于电感、电容等元件的巧妙组合,宛如一场精密的交响乐演奏。电感对高频信号呈现出高阻抗,如...

关键字: EMI 滤波器 噪声

在当今的电子设备设计领域,电源的高效性与稳定性始终是工程师们关注的核心要点。对于众多对噪声极为敏感的设备而言,找到一款既能提供高效动力支持,又能确保低噪声稳定运行的电源,无疑是整个设计过程中的关键环节。在这一探索过程中,...

关键字: 电源 噪声 滤波器

在电子设备的电源供应领域,如何实现高效且稳定的供电一直是工程师们不懈追求的目标。开关稳压器因其较高的效率在众多应用中得到广泛使用,然而,其固有的噪声问题却常常成为限制其进一步应用的瓶颈。尤其是在为对噪声极为敏感的设备,如...

关键字: 稳压器 噪声 滤波器

在音响系统的搭建与调试过程中,众多音响爱好者往往将大量精力聚焦于音箱的品质、功放的功率以及音源的优劣上,却常常忽视了一个对音质有着深远影响的关键要素 —— 音响电源滤波器。实际上,音响电源滤波器在整个音响系统里占据着举足...

关键字: 音响系统 滤波器 音源
关闭