当前位置:首页 > 模拟 > 模拟
[导读]1 引言 为了精确地输出正弦波、调幅波、调频波、PSK及ASK等信号,并依据直接数字频率合成(Direct Digital FrequencySvnthesizer,简称DDFS)技术及各种调制信号相关原理,设计了一种采用新型DDS器件产生正弦波信

1 引言
    为了精确地输出正弦波、调幅波、调频波、PSK及ASK等信号,并依据直接数字频率合成(Direct Digital FrequencySvnthesizer,简称DDFS)技术及各种调制信号相关原理,设计了一种采用新型DDS器件产生正弦波信号和各种调制信号的设计方法。采用该方法设计的正弦信号发生器已广泛用于工程领域,且具有系统结构简单,界面友好等特点。


2 系统总体设计方案
   
图1给出系统总体设计方框图,它由单片机、现场可编程门阵列(FPGA)及其外围的模拟部分组成。在FPGA的内部数字部分中,利用FPGA内部的总线控制模块实现与键盘扫描、液晶控制等人机交互模块的通信,并在单片机与系统工作总控制模块之间的交互通信中起桥梁作用。系统工作总控制可统一控制各个时序模块;各时序模块用于完成相应的控制功能。在模拟部分中,利用无源低通滤波器及放大电路,使AD9851型DDS模块的输出信号成为正弦波和FM调制信号;再利用调幅电路,使FPGA内部DDS模块产生的信号与AD9851输出的载波信号变为调幅信号,同时在基带码控制下通过PSK/ASK调制电路得到PsK和ASK信号。最后,各路信号选择通道后,经功率放大电路驱动50Ω负载。

3 理论分析与计算
3.1 调幅信号
   
调幅信号表达式为:

   
式中:ω0t,ωt分别为调制信号和载波信号的角频率;MA为调制度。
    令V(O)=Vocos(ω0t),V(ω)=MAcos(ωt),则V(t)=V(O)+V(O)V(ω)。故调幅信号可通过乘法器和加法器得到;通过改变调制信号V(ω)的幅值改变MA,V(ω)的范围为0.1~l V,MA对应为10%~100%。
3.2 调频信号
   
采用DDS调频法产生调频信号,具体实现方法:通过相位累加器和波形存储器在FPGA内部构成一个DDS模块,用于产生1 kHz的调制信号。其中,波形存储器的数据即为调制信号的幅度值。将这些表示幅度值的数据直接与中心频率对应的控制字相加,即可得到调频信号的瞬时频率控制字,再按调制信号的频率切换这些频率控制字,即可得到与DDS模块输出相对应的调频信号。
3.3 PSK和ASK信号
    ASK信号是振幅键控信号,可用一个多路复用器实现。当控制信号为1时,选择载波信号输出;当控制信号为0时,不选择载波信号输出;当控制信号由速率为10 Kb/s的数字脉冲序列给出时,可以产生ASK信号。PSK信号是移相键控信号,这里只产生二相移相键控,即BPSK信号。它的实现方法与ASK基本相同,只是在控制信号为0时,选择与原载波信号倒相的输出信号,该倒相信号可由增益倍数为l的反相放大电路实现。

4 主要功能电路设计
   
图2给出调幅电路。它采用ADI公司的乘法器AD835实现。该器件内部自带加法器,可直接构成调幅电路。图3给出PSK/ASK电路。它主要由多路复用器和移相器构成。其中,移相器采用Maxim公司的高速运算放大器MAX477所构成的反相放大电路实现,多路复用器采用ADI公司的AD7502。当两条通道选择控制线A1AO为ll时,输出原信号;当A1A0为00时,输出原信号的反相信号;当A1A0为01时,无信号输出。这样只要FPGA按固定速率通过Al和AO两条控制线给出基带序列信号,就能相应输出PSK和ASK信号。

    FPGA内部DDS调频电路由分频器、累加器、ROM和AD985l时序控制电路构成。分频器用于得到20 kHz的信号,作为AD985l控制字的切换频率;ROM中存储了1 kHz的正弦波表,接收累加器给出的控制字切换信号,同时向AD985l时序控制模块发送频偏控制字;AD985l时序控制电路根据中心频率并结合频偏控制字向AD985l器件发送频率控制字,以实现DDS调频。

    功率放大电路由ADI公司的高速运算放大器AD811和T1公司的缓冲器BUF634构成,如图4所示。AD8ll采用同相放大器接法,将输入信号放大到电压峰峰值为6 V;后级缓冲电路用于提供足够的输出电流,使负载的输出电压峰值稳定在6 V。由于AD81l的输出电流较大,所以在AD811与缓冲器之间串接了一只l kΩ的电阻用于限流。电路调试时发现.输出高频信号有衰减。经过分析获知,主要原因在于后级缓冲器有8 pF的等效输入电容(见图4中虚线),该电容影响电路的高频响应。于是在AD811输出与BUF634输入之间接入了 一只330nF的补偿电容,补偿后的电路高频响应效果良好。

5 系统软件设计
   
该系统软件采用结构化和层次化的设计方法。前者指相应的基本功能模块利用底层处理子程序所处理的数据,向上层全功能模块提供处理后的数据;后者指利用前者的接口完成该模块功能。最后由主程序调用全功能模块构建系统。图5给出程序流程图。

    整个程序以按键中断为主线,分为正弦波、调幅波、调频波、键控波4种输出模式和1个复位模式。在不同的模式下分别执行相应的子程序,最后分别向FPGA写入相应的控制字。

6 测试数据
   
该系统测试主要由高频毫伏表、频率计、示波器完成。其中,高频毫伏表测试输出信号峰值;频率计测试输出信号的频率;示波器用于测试正弦波、调幅波、调频波、PSK以及ASK等信号波形。这里选取1 kHz,lO kHz,100 kHz,l MHz和10 MHz这5个频率点对正弦信号发生器进行测试,将实际频率与预置频率相比较,得到各频率点的相对误差均小于0.05‰。其中100 kHz和10 MHz处的相对误差小于0.02‰;5个频率点所对应正弦信号的电压峰值分别为6.28 V,6.25 V,6.10 V,5.90 V,5.60 V。


7 结语
    该系统较好地完成了预期的各项功能和指标。正弦波的输出频率范围为l kHz~10 MHz,在其内频率稳定度为10~4;调频波的输出频率范围为100 kHz~10 MHz,在其内最大频偏可分为5 kHz/10 kHz二级程控调节;调幅波的输出频率范围为l~10 MHz,在其内调制度可在10%~100%之间程控调节,且步进为10%;ASK及PSK信号则通过移相电路和多路复用器的结合,在FPGA给出的基带序列信号控制下产生。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子系统中,电源如同人体的心脏,为各个元器件提供持续稳定的能量。而电源系统电流的合理分配,更是决定了整个系统能否稳定、高效运行的关键因素。不合理的电流分配,可能导致某些元器件供电不足,无法正常工作;也可能使部分器件电流...

关键字: 电源系统 器件 电流

直接数字合成(DDS)技术正在迅速发展,但UHF和微波输出频率的直接合成尚不实用或经济上不可行。

关键字: DDS

氮化镓(GaN)作为第三代半导体材料的杰出代表,凭借其宽禁带宽度、高击穿电压、高热导率、高电子饱和漂移速度等卓越特性,在光电子、电力电子、射频微波等诸多领域展现出了巨大的应用潜力。然而,如同任何新兴技术一样,氮化镓器件在...

关键字: 氮化镓 半导体 器件

在现代电子设备中,蜂鸣器作为一种能够发出声音信号的器件,被广泛应用于各种领域,如电子玩具、报警器、电子设备的提示音等。其中,有源压电式蜂鸣器以其只需接上额定直流电压即可发声的特点,受到了工程师们的青睐。那么,有源压电式蜂...

关键字: 蜂鸣器 器件 直流电压

光隔离器件是一种只允许光沿一个方向通过而在相反方向阻挡光通过的光无源器件。它的作用是防止光路中由于各种原因产生的后向传输光对光源以及光路系统产生的不良影响。

关键字: 光隔离 器件

上海2024年11月6日 /美通社/ -- 在全球新质生产力蓬勃发展、全力迈向可持续发展的时代浪潮下,制造业作为减少能源消耗与碳排放的关键"主战场",绿色低碳转型对于实现全球碳中和目标至关重要。构建清...

关键字: 器件 欧姆龙 高速通信 新能源

在半导体产业的快速发展中,碳化硅(SiC)作为一种新型的宽禁带半导体材料,正逐步成为功率半导体行业的重要发展方向。碳化硅功率器件以其耐高温、耐高压、高频、大功率和低能耗等优良特性,在新能源汽车、光伏发电、轨道交通、智能电...

关键字: 半导体 碳化硅 器件

北京2024年10月21日 /美通社/ -- 随着自动驾驶算法技术的快速发展,基于BEV+Transformer的感知范式为高阶自动驾驶提供了更高精度感知、更强场景泛化能力和更优多模态融合的方案,是目前各大主流...

关键字: 模型 自动驾驶 延时计算 DDS

在实际的应用电路中,处理瞬时脉冲对器件损害的最好办法,就是将瞬时电流从敏感器件引开。为达到这一目的,将TVS在线路板上与被保护线路并联。

关键字: 瞬时脉冲 器件 电流

正弦信号源采用直接数字频率合成(DDS)技术,即以一定频率连续从EPROM中读取正弦采样数据,经D/A转换并滤波后产生EIT所需的正弦信号。

关键字: 正弦信号源 DDS 正弦采样
关闭