当前位置:首页 > 智能硬件 > 智能硬件
[导读]基于FPGA的多片RAM实现高速数据的存储和传输的方案,并应用于1GS/s数据采集系统中.可以保证采集数据的可靠稳定存储.

随着信息科学的飞速发展,数据采集和存储技术广泛应用于雷达、通信、遥测遥感等领域。在高速数据采集系统中,由ADC转换后的数据需要存储在存储器 中,再进行相应的处理,保证快速准确的数据传输处理是实现高速数据采集的一个关键。由于高速ADC的转换率很高,而大容量RAM相对ADC输出速度较慢, 保持高速数据存储过程的可靠性、实时性是一个比较棘手的问题。对于数据采集系统中的大容量高速度数据存储、传输,本文提出一种基于FPGA的多片RAM实 现高速数据的存储和传输的方案,并应用于1GS/s数据采集系统中,实现了以低成本RAM完成高速实时数据存储系统的设计。

方案选择


高速的数据采集速度是保证数据采集精度的标准,但往往在数据处理时并不需要以同样的速度来进行,否则对硬件的需求太高,成本也较高。这就需要有一个数据缓存单元,将数据有效地存储,再根据系统需求进行数据处理。


通常构成高速缓存的方案有三种。第一种是FIFO(先进先出)方式。FIFO存储器就像数据管道一样,数据从管道的一头流入,从另一头流 出,先进入的数据先流出。FIFO具有两套数据线而无地址线,可在其一端写操作而在另一端读操作,数据在其中顺序移动,因而能够达到很高的传输速度和效 率,且由于省去了地址线而有利于PCB板布线。缺点是只能顺序读写数据,不易灵活控制,而且大容量的高速FIFO非常昂贵。


第二种是双口RAM方式。双口RAM具有两套独立的数据、地址和控制总线,因而可从两个端口同时读写而互不干扰,并可将采样数据从一个端口 写入,而由控制器从另一个端口读出。双口RAM也能达到很高的传输速度,并且具有随机存取的优点,缺点是大容量的高速双口RAM的价格很昂贵。


第三种是高速SRAM切换方式。高速SRAM只有一套数据、地址和控制总线,可通过三态缓冲门分别接到A/D转换器和控制器上。当A/D采 样时,SRAM由三态门切换到A/D转换器一侧,以使采样数据写入其中。当A/D采样结束后,SRAM再由三态门切换到控制器一侧进行读写。这种方式的优 点是SRAM可随机存取,同时较大容量的高速SRAM有现成的产品可供选择。


从降低成本上考虑,采用第三种方式实现大容量数据存储功能。结合1GS/s数据采集系统的要求,存储深度为4MB。选择ISSI公司的静态RAM,由8片IS61LV25616构成4MB测试数据的存储,系统结构如图1所示。

图1  数据存储原理框图

数据存储设计


● 数据流控制


ADC为双通道500MS/s的转换率,8bit的垂直分辨率,转换数据的输出是每通道I、Q两个方向上差动输出,在差动时钟500MHz 的驱动下,可以实现1GS/s的实时采样率,由ADC输出的4路转换数据流输出分别为250MS/s。而IS61LV256系列RAM的速度级别为 10ns或12ns,这样数据必须经过FPGA进行缓存以后,才可以再次存入RAM。


IS61LV25616系列RAM芯片有16位数据线,18位地址宽度,同时还包括数据读RD、写WR及片选CS等控制信号。将8片RAM并行连接到FPGA上,组成数据采集的存储单元。


将从ADC输出AI[8...0]、AQ[8...0]、BI[8...0]、BQ[8...0],每路信号都为LVDS输出,共32位为 一组转换数据DATA[31...0],速率为250MS/s,要将这个速度在FPGA内部降至RAM可接受的范围。选用CycloneII系列 FPGA,其内部时钟可工作在402.5MHz,支持单端和高速差动标准I/O接口,对于250MS/s的数据流完全可以接收。利用FPGA内部的D触发 器作为缓冲,经过4级缓冲之后分别得到DBO[127...0],这样数据速度降为62.5MS/s。经过缓冲后的数据已经在选用的RAM接受速度级别 内,将得到128位的数据作为8片RAM的数据线,完成了数据流的控制。数据缓冲的原理如图2所示。

图2  数据缓冲设计


● 地址发生器设计


每次读写数据时,必须提供数据的存储位置,以读写信号作为时钟计数信号,顺序产生地址信号,其中NWE是RAM的写数据信号,NOE是读数 据信号,二者都是低电平有效,选择AB[17...0]作为RAM组的地址信号。CNTEN是地址计数器的使能信号,由读取/写入数据的深度决定,当未完 成读取/写入的数据时,CNTEN=0,此时允许读/写操作继续执行;当读/写操作完成时,相应的地址信号将CNTEN设置为1,则停止地址计数。地址发 生器的原理如图3所示。

图3  地址发生器设计


● 读写数据的设计


在设计好采集数据的地址发生单元后,接下来就是配合时序进行读写操作。


图4是RAM的读操作时序图,从图中可以看出,当指定待操作的地址后,设置芯片使能信号OE和片选使能信号CE有效,即可从数据线上读出相应地址内的数据。

图4  RAM的读数据时序图


对于单片RAM的操作比较简单,但是要将数据顺序写入8片RAM中,就要求对上一片RAM写操作完成后,系统能够设置下一个待操作的RAM 有效,128位数据线分别对应8片RAM的数据线,由于地址线和读写使能线公用,则需要分别设置每个RAM的片选,以区别当前操作是针对哪一个RAM。片 选信号可以由译码器产生。读操作时设置相应RAM的片选有效,即可读出存储的数据,而进行写操作时,则可以设置所有的RAM片选有效,将采集到的数据同时 并行的写入8片RAM中。根据这些描述,片选信号的设计如图5所示。NIOMD为操作的状态信号,说明当前的操作是读状态或是写状态,读数据情况下设置为 1,片选信号分别有效,写数据情况下设置为0,所有RAM均处于片选有效状态下,可以同时写入数据。这样的设计也是为了配合系统的需求,一般的,读取数据 的速度相对于写数据来说还是要快一些的。

图5  RAM片选使能信号设计

仿真验证


将上述设计方案整合后,配合其他控制信号的设计,就完成了数据采集系统数据存储功能的设计。在QuartusII软件中对上述设计进行波形 仿真,可以看到设置SET值及相应的状态控制信号,则在VDB端就可以按照CS指示的相应的RAM芯片中顺序读出预先存入的数据。按照图中所示的状态寄存 器设置,读取深度设置寄存器设置为最小值SET[4...1]=000,即只读每片RAM的首个存储数据,则地址发生器的最高值为8,从图中可以看到当地 址发生器输出值增加到8时,WE跳变为高电平,RAM的读使能无效。由于AB[3]=1,使得CNTEN=1,地址发生器的计数时钟使能无效,计数器停止 计数,完成一轮数据的读取操作。读数据仿真验证结果如图6所示。

图6  读数据仿真验证


在图6中,对于当前数据线上的数据串DB=0010,0011,1010,1110,1101,0011,1001,0111,片选信号 CS低电平有效,当CS=11011111时,即选中按顺序由低位到高位计算的第6片RAM,此时对应的在VDB上读出的数据应该为DB的第6个数据值, 即为1010。从波形方针图上得到验证。

结语


利用FPGA的内部资源,设计灵活的逻辑控制,完成高速大容量数据采集的存储和传输设计,本文提出的设计方案可以在选用低成本、操作简单的 静态RAM组的情况下,实现实时大容量数据存储需求的一种设计方法,并在EDA软件中进行了仿真验证,成功地应用在1GS/s数据采集模块中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

VGA接口主要用于将计算机的数字图像信号转换成模拟信号,从而可以在显示器上显示。这种接口通常包含15个针脚,分成3排,每排5个孔,可以传输红、绿、蓝三种基本颜色的信号以及水平和垂直同步信号。

关键字: vga接口 信号 电压

上海2023年9月4日 /美通社/ -- 2023年8月8日,成都大运会正式落幕。来自113个国家和地区的6500名大学生运动员,在12个比赛日里同台竞技,展现青春与体育的力量。与此同时,在大运会的各个赛场、运动员村以及...

关键字: 信号 TV PS CE

瓦努阿图维拉港2023年8月28日 /美通社/ -- Vantage(或"Vantage Markets")欣然宣布在Vantage应用程序上推...

关键字: GE AN 信号 应用程序

(全球TMT2023年7月19日讯)三星电子宣布已完成其业内首款GDDR7的研发工作,年内将首先搭载于主要客户的下一代系统上验证。继2022年三星开发出速度为每秒24千兆比特(Gbps)的GDDR6 16Gb之后,GD...

关键字: DDR 三星电子 信号 GBPS

频谱分析仪是用于分析信号频谱结构的设备,可以用于测量信号的频率、幅度、功率、谱线宽度等参数,是现代电子测量和通信领域中不可或缺的工具。

关键字: 频谱分析仪 信号

频谱分析仪是用于分析信号的频率成分和功率的电子设备。分辨率是频谱分析仪的一个重要指标,它决定了频谱分析仪能够分辨的信号细节和频谱特征。在频谱分析仪的使用过程中,分辨率受到多种因素的影响,这些因素包括信号频率、信号强度、分...

关键字: 频谱分析仪 信号 分辨率

频谱分析仪是用于测量信号频率、幅度和功率谱等特性的重要工具,广泛应用于电子工程、通信、生物医学等领域。本文将介绍频谱分析仪的基本原理、使用方法和技巧,帮助读者更好地理解和使用频谱分析仪。

关键字: 频谱分析仪 信号

频谱分析仪是一种用于分析信号频率成分的重要仪器,能够在复杂信号中识别出各个频率成分,以及它们在不同时间段的强度和带宽。在科学研究、工业生产、通信网络、电子对抗等领域,频谱分析仪发挥着重要作用。

关键字: 频谱分析仪 信号

脉冲变压器是一种用于将电源信号转换为所需电压和电流的特殊变压器。它通常被用于直流电源或高频交流电源中,可用于稳压、反接保护、防过载等应用。当我们需要选型脉冲变压器时,需考虑以下几个方面:输出电压、最大输出电流、工作频率、...

关键字: 脉冲变压器 信号 电源

集成运算放大器是一种常见的电子元器件,它广泛应用于模拟电路、信号处理、控制系统等领域。集成运算放大器主要的功能是放大电压信号。它可以将微弱的输入信号放大成为符合实际需要的信号大小,同时也可以对信号进行滤波、积分、微分等操...

关键字: 运算放大器 电路 信号
关闭
关闭