当前位置:首页 > 工业控制 > 工业控制
[导读] 神经网络PID控制器实现了两种算法本质的结合,借助于神经网络的自学习,自组织能力,可实现PID参数的在线调整,控制器自适应性好;该算法不要求被控对象有精确的数学模型,扩大了应用范围,控制效果良好;在合理选择神经网络的结构的情况下,该算法有很强的泛化能力。基于以上优点,神经网络PID控制器具有很好的发展应用前景。

 

1. 引言
      PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,因其具有算法简单、鲁棒性好、可靠性高、直观性好等优点被广泛的应用于工业过程控制及运动控制中[1]。常规PID控制效果的优劣,不仅仅取决于控制系统模型的精确程度,还必须调整好三个参数的关系,而这种关系不一定是简单的线性组合。实际的工业过程及运动过程往往具有时变性、变参数、变结构等不确定性及很强的非线性,精确的数学模型难以建立,此外,常规PID还有实现在线调整困难,参数间相互影响,参数整定时间长等缺点,难以取得理想的控制效果。
      随着控制理论的发展,将应用广泛的PID控制器与智能控制理论相结合[2]成为智能控制研究的新方向,神经网络算法具有逼近任意非线性表达能力,很强的自学习能力和概括推广能力,在解决高度非线性和不确定系统方面有很大的的潜能,应用神经网络,可以从复杂的PID三个参数组合中寻求最佳的线性组合,使神经网络和PID本质结合。从而使得控制器具有较好的自适应性,实现参数的自动实时调节,适应过程的变化,提高系统了的鲁棒性和可靠性。
2. BP神经网络
2.1 BP神经网络的构成及设计[3]
      BP神经网络是一种具有三层或三层以上的神经网络,包括输入层、隐含层、输出层,上下层之间实现全连接,而每层神经元之间无连接。当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。接下来,按照减少目标输出与实际误差的方向,从输出层经过各中间层逐层修正各连接权值,最后回到输入层,这种算法即BP算法。随着这种误差逆的传播修正不断进行,网络对输入模式响应的正确率也不断上升。
(1)输入输出层的设计
      输入层的设计可以根据需要求解的问题和数据表示方式确定,若输入信号为模拟波形,那么输入层可以根据波形的采样点数目撅腚输入单元的维数,也可以用一个单元输入,这是输入样本为采样的时间序列。输出层的维数可以根据使用者的要求确定。如果BP网络用作分类器,类别模式一共有m个,那么输出层神经元的个数为m或者。
(2)隐层的设计
      隐层单元的数目与问题的要求、输入/输出单元的数目都有直接的关系,隐单元的数目太多会导致学习时间过长、误差不一定最佳,也会导致容错性差、不能识别以前没有的样本等等,因此,一定存在一个最佳的隐单元数,通常用以下三个公式来选择最佳隐单元数:
1),其中k为样本数,n为输入单元数。
2),其中m为输出神经元数,n为输入单元数,a为[1,10]之间的常数。
3),其中n为输入单元数。
2.2 典型神经网络结构
一个典型的三层神经网络结构如下图所示:

图1  BP神经网络结构图


      其中: 、 、…、 为 BP网络的输入; 、 、…、 为 BP网络的输出,对应PID控制器的三个参数;为输层到隐含层的连接权值;为隐含层到输出层的连接权值。通过神经网络的自学习、加权系数的调整,使神经网络输出对应于某种最优控制规律下的PID控制器参数。 
图一中各参数之间的关系[4]如下:
输入层:

隐含层:    
输出层:    
取性能指标为:,按照梯度下降法修正网络的权值,使最小,修正方法如下:
隐含层:     
输出层:     
3. 神经网络PID控制器及控制算法

1、BP神经网络PID控制器结构如下图所示:

图2  神经网络控制器结构图

      由图可知:控制器由两部分组成,分别为常规PID控制和神经网络,其中,常规PID直接对被控对象进行闭环控制,并且其控制参数Kp、Ki、Kd为在线调整方式;神经网络,根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出对应于PID控制器的三个可调参数。通过神经网络的自学习、加权系数的调整,使神经网络输出对应于某种最优控制规律下的PID控制器参数。
2、控制算法
神经网络PID的控制算法[5]如下:
(1).  确定神经网络的结构,即确定输入节点数和隐含层节点数,并给出各层加权系数的初值和,并选定学习速率 和惯性系数 ,令k =1;
(2).  采样得到r(k)和y(k),计算当前时刻误差error(k)= r(k)-y(k);
(3).  计算各神经网络的输入、输出,其输出层的输出即为PID控制器的三个控制参数Kp、Ki、Kd;
(4).  计算 PID控制器的输出;
(5).  进行神经网络学习,在线调整加权系数,实现 PID控制参数的自适应调整;
(6).  令k=k+1,返回第(1)步。
4. 仿真实例
4.1 被控对象
设被控对象的近似数学模型为:,所选的输入信号为一时变信号:
神经网络的结构选择4-5-3,学习速率为0.55,惯性系数为0.04,加权系数初始值为区间[-0.5,0.5]上的随机数,采样频率为1000Hz。
Matlab仿真结果如图三所示:

图3-1  输入输出曲线

图3-2  误差曲线

4.2 仿真结果分析
      由仿真曲线可以看出,神经网络PID稳态误差小,解决了常规PID超调,抖动等问题,控制精度高,实现了对控制信号几乎相同的跟踪,具有较好的快速性和适应性。
5. 结语
      神经网络PID控制器实现了两种算法本质的结合,借助于神经网络的自学习,自组织能力,可实现PID参数的在线调整,控制器自适应性好;该算法不要求被控对象有精确的数学模型,扩大了应用范围,控制效果良好;在合理选择神经网络的结构的情况下,该算法有很强的泛化能力。基于以上优点,神经网络PID控制器具有很好的发展应用前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

伦敦2024年4月16日 /美通社/ -- ATFX宣布任命Siju Daniel为首席商务官。Siju在金融服务行业拥有丰富的经验和专业知识,曾在全球各地的高管职位上工作了19年以上。Siju之前担任FXCM首席商务官...

关键字: NI AN SI BSP

● 颠覆性的专用软硬件加速平台;利用GPU和CPU计算以及专有软件算法,提高准确度、速度和规模的同时,带来高达100倍的设计效率提升; ● 与传统HPC相比,支持GPU-resident模式的求解器可将仿真能效显著提高2...

关键字: AI 仿真

● 热、应力和电子散热设计同步分析,让设计人员可以无缝利用ECAD和MCAD对机电系统进行多物理场仿真; ● 融合FEM和CFD引擎,应对各种热完整性挑战——从芯片到封装,从电路板到完整的电子系统; ● Celsius...

关键字: AI 仿真

具有高采样率的泰克任意波形发生器(AWG)是功能多样且强大的仪器,可以提高脉冲激光实验的质量和效率,为以前所未有的精度和灵活性创建和操作光脉冲提供了多种可能性。

关键字: 仿真 测试测量

● 四态硬件仿真应用可加速需要X态传播的仿真任务; ● 实数建模应用可加速混合信号设计软件仿真; ● 动态功耗分析应用可将复杂SoC的功耗分析任务加快5倍。

关键字: 仿真 SoC

PID控制器,即比例-积分-微分控制器,是一种广泛应用于自动化控制系统中的控制器。它通过将系统的偏差信号进行比例、积分和微分运算,形成相应的控制信号,对系统进行精确的调节和控制。本文将详细介绍PID控制器的作用及原理。

关键字: PID控制器 自动化控制 控制信号

目前,中国市场HiL技术主要应用于汽车、航空航天、国防、能源、电力电子等产业,2016年-2028年市场规模复合增长率达18.5%,预计2028年中国HiL模拟行业市场规模达到273亿元,其中尤以汽车行业HiL应用市场规...

关键字: 仿真 汽车电子

电力物联网有利于建设电力用户用电行为大数据,为用电行为的识别和优化奠定基础。鉴于此,搭建了基于电力物联网的用电行为管控系统,根据数据流量需求和功能部署方案采用分层建设的体系架构。终端层用于向各用电设备提供接口和协议转换服...

关键字: 电力物联网 BP神经网络 边缘计算

在今年的泰克创新论坛上,我与新思科技(Synopsys)的Madhumita Sanyal和安立公司(Anritsu)的Hiroshi Goto一起讨论了最新PCIe版本面临的挑战,以及PCIe 7.0可能面临的挑战。

关键字: 仿真

近日,第11届EEVIA年度中国硬科技媒体论坛暨产业链研创趋势展望研讨会在深圳召开,上海合见工业软件集团产品工程副总裁孙晓阳在会上发布了主题为“把握芯片设计关键核心,助力国产EDA新格局”的演讲。

关键字: 芯片设计 仿真 验证 chiplet 合见工软 IP
关闭
关闭