当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:为了改善传统电机调速系杂波干扰大,系统复杂的缺点,设计一种以工业单片机为核心运算控制芯片,可控硅采用过零检测触发方式,主回路由软件、硬件协调完成,控制可控硅进行电机调速的电路,达到了减少主电路杂

摘要:为了改善传统电机调速系杂波干扰大,系统复杂的缺点,设计一种以工业单片机为核心运算控制芯片,可控硅采用过零检测触发方式,主回路由软件、硬件协调完成,控制可控硅进行电机调速的电路,达到了减少主电路杂波干扰的目的,控制灵活,系统设计简单,检测和维护方便。
关键词:杂波干扰;可控硅调速;过零检测;触发

    可控硅具有功率大,效率高,体积小,重量轻,无噪音,控制灵敏等优点,而且还具有使用小电流,小功率来控制大电流大功率的特点,其应用范围,前途都非常广泛。用单片机实现可控硅过零调速,相比于变频调速,不仅可使可控硅的导通角控制由软件完成,触发电路有结构简单,控制灵活,精度可通过软件补偿,任意调节转速等特点,还可以避免类似移相调速,脉宽调速(PWM),正弦脉宽调速(SPWM)等在调速过程中产生大量噪声和高次谐波,对电路器件耐压值要求较高的。

1 可控硅过零检测调速控制的方法
    数字实现可控硅过零控制的示意图如图1。可以看出,过零调速通过的工作电压是完整的正弦波形,过零导通且过零截止。调速时通过改变在给定的时间内改变加在负载上的交流正弦波个数来调节电机的转速。由于可控硅是在电压(电流)过零时触发导通的,导通时的波形是完整的正弦波或半波,所以不存在可控硅移相调压调速所存在的一些缺点,如:产生大的射频干扰,高次谐波等。这样就解决了第一个问题,同时也提高了电路器件的安全系数。


    数字实现可控硅过零调速控制需要解决2个问题:实现工频电压的正负过零检测,并在过零时产生脉冲信号;过零脉冲信号必须受单片机输出信息控制,从而控制可控硅过零触发时间。
    过零脉冲信号的个数和时间间隔可以通过软硬件协调解决。直接控制导通脉冲个数和截止脉冲个数就可以了,调速范围可以从零到最高速度(加入完整的工频电压时的速度)。设最高速度转速为n0,导通脉冲个数为k,截止脉冲个数为s,速度为n,理论上:
    n=(k/s)n0     (1)
    实际工作中要根据驱动负载设定转速范围。

2 硬件电路设计
    硬件电路设计框图如图2所示。单片机为控制器的核心部件,其主要工作是接收220 V交流电的过零信号,根据过零检测信号控制可控硅的导通时间;接收掉电检测电路送来的掉电信号;检测电机转速等级并在数码管上显示。


    过零检测电路的最终目标是实现当交流电压通过零点时取出其脉冲。其工作过程为:当通过正半周较高电压时,光电管D1,T1导通Vo为低电平,当正半周电压反向接近零点时D1达不到导通电压的值而截止,从而使T1截止Vo为高电平;同样当通过负半周较高电压时,光电管D2,T2导通Vo为低电平,当负半周电压正向接近零点时D2达不到导通电压的值而截止,从而使T2截止Vo为高电平。通过这个正负交越零点时的正脉冲信号向单片机89C2051发出外部中断 INT0,单片机根据该信号,经过一定的延时后控制可控硅导通。其电路如图3所示。


    掉电检测电路是当整流后的电源电压小于某一值时,认为电源被关闭,此时产生掉电信号,该信号作为单片机外部中断信号INT1,使单片机进入掉电保护程序。
    数码显示电路是用数码管将存储在EEPROM中的电机转速用数字显示出来,可以显示电机的转速等级。
    导通控制电路通过带光隔离的双向可控硅驱动器MOC3052驱动可控硅,实现单片机对控硅的导通控制,从而达到转速控制的目的。可控硅触发电路如图4所示。



3 软件设计要点
    采用双向可控硅过零触发方式,由单片机控制双向可控硅的通断,通过改变每个控制周期内可控硅导通和关断交流完整全波(或半波)信号的个数来调节负载功率,进而达到调速的目的。由于INT0信号反映工频电压过零时刻,因此只要在外中断O的中断服务程序中完成控制门的开启与关闭,并利用中断服务次数对控制量 N(在每个控制周期内可控硅导通的正弦波个数)进行计数和判断,即每中断1次,对N进行减1计数。如N≠0,保持控制电平为“1”,继续打开控制门;如 N=O,则使控制电平复位为“0”,关闭控制门,使可控硅过零触发脉冲不再通过。这样就可以按照控制处理得到的控制量的要求,实现可控硅的过零控制,从而达到按控制量控制的效果,实现速度可调。

4 结语
    在实验室试验调试过程中,对直流电机的调速显得较稳定,调速范围也很宽;但对交流电机的调速过程中,中高速段调速较平稳;在低速段调速时电机存在抖动现象,并且速度越低,抖动越严重,这也是本设计中要解决的后续问题。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的

关键字: 模拟地 数字地 电路设计

作者 Mohamad Ali| IBM咨询首席运营官 北京2024年5月24日 /美通社/ -- 生成式AI的兴起几乎在所有面向上给业务带来改变。根据 IBM 商业价值研究院最新的年度 CEO 研究,近60%...

关键字: IBM AI BSP 模型

电力电子系统必须以极高的能效作为其首要要求。换句话说,电源电路必须有效,并且它产生的热量必须由卓越的冷却系统带走。

关键字: 可控硅 双向可控硅

本文主要讲了六款简单的开关电源电路设计原理图,24V开关电源的工作原理是什么、24V开关电源电路图等内容,下面就一起来看看吧。

关键字: 开关电源 电路图 电路设计

台北2024年5月21日 /美通社/ -- 提供针对AMD WRX90和TRX50主板优化的DDR5 OC R-DIMM 提供容量128GB(16GBx8)到768GB(96GBx8),速度5600MHz到8...

关键字: AMD 内存 BSP GB

上海2024年5月20日 /美通社/ -- 2024年5月16日,世界知名的生命科学公司 Eppendorf 集团于第二十三届生物制品年会上成功举办了"疫路超越 推流出新"的产品发布会,正式推出大规模...

关键字: RF PEN BSP IMAC

北京2024年5月20日 /美通社/ -- 过去五年里,支付和收款方式日新月异,其发展和变化比过去五十年都要迅猛。从嵌入式数字商务的出现,到"一拍即付"的...

关键字: VI BSP PAY COM

华钦科技集团(纳斯达克代码: CLPS ,以下简称"华钦科技"或"集团")近日宣布致敬 IBM 大型机 60 载辉煌历程,并将继续实施集团大型机人才培养计划。

关键字: IBM BSP 研发中心 PS

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP
关闭
关闭