当前位置:首页 > 工业控制 > 工业控制
[导读]1引言随着微电子技术和现代控制理论在交流变频调速系统中的应用,变频器(或逆变器)的性能也得到飞跃性的提高,并越来越广泛地应用于工业生产和日常工作的许多领域之中。但是,变频器输出的具有陡上升沿或下降沿的脉冲

1引言

随着微电子技术和现代控制理论在交流变频调速系统中的应用,变频器(或逆变器)的性能也得到飞跃性的提高,并越来越广泛地应用于工业生产和日常工作的许多领域之中。但是,变频器输出的具有陡上升沿或下降沿的脉冲电压却在电动机接线端子及绕组上产生了过电压,造成电动机绕组绝缘的过早破坏。试验研究表明,很高的电压上升率(dv/dt)在电动机绕组上产生极不均匀的电压分布,且随着变频器与电动机之间电缆(线)长度的增加,在电动机接线端子上产生高频振荡的过电压,当电缆长度超过某一临界值后,电动机端子上过电压的幅值达到变频器输出电压的2倍,长时间重复性的电压应力的作用将导致电动机绕组匝间绝缘的过早破坏。

为了降低电动机端子上高频振荡的过电压,最适宜的方法之一是在电动机端子上安装特殊设计的滤波器。滤波器的参数与变频器特性及电缆参数有关,然而变频器、电缆及电机一般都不是同一制造商或销售商提供,变频器的开关特性、电缆参数及长度的不确定性,使得滤波器的参数选择具有不固定性。关于滤波器的参数与电机端电压或电流特性的关系,目前还未有系统研究的报道。本文主要研究在不同电缆长度下,滤波器的参数对电机端电压特性的影响,确定电缆长度、滤波器的电阻和电容与电机端子过电压幅值及脉冲上升沿时间的关系,找出滤波器参数的选择范围,为变频调速驱动系统的制造和使用提供试验依据和理论基础。

2试验研究及分析

PWM变频调速驱动系统中,造成电机端子产生高频振荡过电压的原因,用传输线理论可以很好地解释,并且通过试验研究也进一步得到证实,它是造成电机绝缘过早破坏的原因之一,因此为了延长电机寿命,除了提高电机自身的绝缘水平外,还必须尽最大可能抑制过电压的浪涌冲击。

2?1滤波器与驱动系统的等值电路

在电动机端子上安装阻抗匹配器可以很大程度地消弱过电压,最简单的是并联一个与电缆的波阻抗接近的电阻,但由于电缆(线)的波阻抗很小,一般为10Ω~500Ω,故并联电阻上的功耗很大,达到数百至数千瓦,因此一般不采用纯电阻匹配器,通常都采用一阶RC低通滤波器。

无源低通一阶阻尼滤波器是电阻和电容串联后并接在电机接线端子相—相上,根据传输线一次波过程的彼得逊(Petersen)规则,滤波器与变频器、电缆和电机组成了如图1所示的等值电路,其中2US为等值电源电压,US即为变频器输出电压,Z0为等值电缆波阻抗,Zm为电机绕组波阻抗,Rf为滤波器电阻,Cf为滤波器电容。

图1一次波过程的等值电路

图2电动机端子上电压上升沿波形与滤波器电容Cf和电阻Rf的关系

(a)Cf=0.08μF(b)Cf=0.02μF

(c)Cf=0.005μF(d)Cf=0.001μF

 

以前研究中已经证实,在通用PWM驱动变频器的载波频率(600Hz~15kHz)下,平均脉冲宽度在数十微秒以上,而由波过程产生的高频振荡过程一般约需十几微秒,因此在分析PWM变频器输出的连续脉冲波的波过程时,可用一个阶跃波的波过程来表示。

电缆的波阻抗Zc可通过测量单位长度的电容C0和电感L0来求得。本文采用低压三相PVC绝缘护套电缆线,测得相—相间C0约为7?6×10-11F/m,L0约为6?5×10-7H/m,从而根据Zc=(L0/C0)1/2求得Zc约为92Ω。这里考虑电源有很小的内阻抗,因此对图1中的等值电缆波阻抗Z0可近似取为100Ω。电动机由于是电感性负载,其波阻抗Zm远大于电缆的波阻抗。 

2?2滤波器的参数对端子上电压波形的影响

对于陡上升沿的电压波来说,滤波器的电容Cf可认为是零波阻抗,相当于短路,如果取滤波器电阻Rf的阻值与电缆的波阻抗相等,而电动机的波阻抗又远大于Rf,则负载阻抗近似为Rf,这样一来,电缆末端的负载阻抗与电缆的波阻抗相匹配,在电动机端子上就不会产生电压波的全反射,也就不会形成过电压。

然而滤波器的电容该如何确定?原理上其电容值越大,对阻抗的匹配性就越好,过电压就越小。但是,随着电容值的增大,电阻上的功耗就增加,因为在连续矩形脉冲电压下,滤波器电阻的总功耗P可近似表示为P=3CfUo2fs(1)

式中fs为变频器的载波频率,对于普通型变频器约为600Hz~5kHz,低噪音型变频器约为8kHz~15kHz,而对于特殊的变频器可达到20kHz。如取Uo为400V,Cf取为0?1μF,fs分别取为1kHz和10kHz,则根据式(1)求得电阻上的总功耗分别为48W和480W,随着电阻功耗的增大,滤波器元件的尺寸也相应增大,因此在小型变频调速电动机应用中,就不能不考虑功耗这一因素。

实际应用中,如果对滤波器不能进行专门设计,就不能达到满意的匹配效果,这就是说滤波器的失匹配程度将影响对电动机端子上过电压的抑制效果,本文在不同的电缆长度(30m、45m和75m)下,电阻Rf分别取75Ω、100Ω、150Ω和350Ω,及电容Cf取为0?001μF~0?16μF,分别测量了电动机端子上电压的波形、上升沿过电压幅值,以及上升时间的变化。

图2所示的是电动机端子上相—相电压上升沿的波形与滤波器电阻的关系,其中电缆长度为45m,滤波器电容分别为0?08μF、0?02μF、0?005μF和0?001μF。

从图2中可以看出,当滤波器电阻近似等于或小于100Ω时,滤波器的电容对高频振荡的幅度及波形有显著的影响,随着滤波器电容的减小,高频振荡的幅值增大,滤波效果变差。而当滤波器电阻远大于100Ω时,滤波器的电容对振荡的幅值及波形的影响很小。

图4电动机端子上电压上升沿时间与滤波器电阻及电容的关系

图3电动机端子上过电压倍率(Ump/Ums)与滤波器电阻Rf及电容Cf的关系

为了更进一步地研究滤波器的电阻和电容与电动机端子上电压特性的关系,下面将分别测量不同滤波器的电阻和电容下,电动机端子上电压上升沿过电压倍率及电压上升时间。

2?3滤波器的参数与端子上过电压的关系

按照上述方法,在电缆长度分别为30m和75m时,在不同的滤波器电阻及电容下,测取电动机端子上电压上升沿的波形,从而得到电动机端子上电压上升沿过电压倍率与滤波器电阻及电容的关系曲线,如图3所示,其中过电压倍率为上升沿的电压峰值Ump与稳态值Ums(即近似等于变频器输出电压幅值)之比。

从图3中可以清楚地看出:滤波器的电容值Cf越大,滤波器的电阻值Rf越小,则过电压的倍率就越小;另外,电缆长度L越长,过电压倍率也相应略增大。这样看来,当电缆长度为75m时,如Cf大于0?02μF,Rf小于150Ω,过电压的倍率将不超过1?2。2?4滤波器的参数与端子上电压上升沿时间的关系

同样,在电缆长度分别为30m和75m时,在不同的滤波器电阻及电容下,测取电动机端子上电压上升沿的波形,从而得到电动机端子上电压上升沿时间与滤波器电阻及电容的关系曲线,如图4所示。

从图4中可以清楚地看出:滤波器的电阻值Rf越小,上升沿时间tr就越大,且随滤波器的电容值Cf的增大而增加,并当Cf超过0?01μF后,tr趋于饱和;当Rf大于150Ω时,上升沿时间与电容值几乎无关;另外,电缆长度L越长,上升沿时间也相应增大。这样看来,当电缆长度为75m时,如Cf大于0?01μF,Rf为100Ω,则上升沿时间超过0?9μs,它是滤波前(约0?45μs)的2倍。

2?5滤波器的Rf和Cf的选择

由上述试验结果可知,滤波器电阻值Rf越小,电容值Cf越大,电缆长度L越短,则电动机端子上过电压的倍率就越小。而且Rf越小,Cf越大,上升沿时间就越大,即电压上升率(dv/dt)也就越小。如果电缆的长度约为75m,取滤波器的电容值Cf为0?02μF,Rf近似取为100Ω,则电动机端子上过电压的倍率从滤波前的1?8减小到1?2,上升沿时间从滤波前的0?45μs增大到0?9μs,则电压上升率减小到滤波前1/3,这有利于减弱过电压对电动机绝缘的破坏。

3结语

用RC一阶阻尼滤波器可以很好地抑制变频调速电动机端子上高频振荡的过电压,滤波器的电阻值越小,电容值越大,则过电压幅值就越小。当滤波器的电容大于一定值(如0?02μF)后,过电压幅值随滤波器电阻值的减小而减小,并在电阻值等于或小于电缆的波阻抗时趋于电源电压值,且随电缆长度的增加而略有增加,而上升沿时间随滤波器电阻值的减小而增加,并随电缆长度的增加而增加。考虑到滤波器的功耗,电容值不宜很大,应低于0?1μF。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

往期发布了基于小华HC32F334数字电源控制器的两路交错无桥图腾柱TCM PFC参考设计,TCM PFC以其全输入范围下软开关的优势越来越受到服务器电源以及通信电源的青睐。同时,两路交错无桥图腾柱CCM PFC因其EM...

关键字: 数字电源控制器 服务器 滤波器

滤波器是一种选频装置,允许特定频率的信号通过,同时抑制其他频率成分。这种功能在去除噪声和频谱分析中至关重要。滤波器,这一电子系统中的关键组件,在信号处理领域扮演着举足轻重的角色。本文旨在深入剖析两种典型滤波器的工作原理,...

关键字: 滤波器 射频技术

滤波器本质上是一种选频装置,其核心功能是让特定频率的信号顺畅通过,同时大幅衰减其他频率的信号。在测试装置中,这种选频功能被充分利用,以滤除干扰噪声或进行频谱分析,实现“去除杂波,精选信号”的目标。

关键字: 滤波器 高通滤波器

深入探索这一个由 ML 驱动的时域超级采样的实用方法

关键字: 机器学习 GPU 滤波器

EMI 滤波器,这一看似简单的电子元件,实则蕴含着高科技的智慧。它如同电子世界的 “清道夫”,主要应用于电源线和信号线上。其工作原理基于电感、电容等元件的巧妙组合,宛如一场精密的交响乐演奏。电感对高频信号呈现出高阻抗,如...

关键字: EMI 滤波器 噪声

在当今的电子设备设计领域,电源的高效性与稳定性始终是工程师们关注的核心要点。对于众多对噪声极为敏感的设备而言,找到一款既能提供高效动力支持,又能确保低噪声稳定运行的电源,无疑是整个设计过程中的关键环节。在这一探索过程中,...

关键字: 电源 噪声 滤波器

在数字化电源设计浪潮中,数字电源控制芯片的选型直接决定了系统的效率、动态响应与智能化水平。从PWM分辨率、环路补偿灵活性到通信接口兼容性,工程师需在性能、成本与开发周期间找到最优解。本文结合TI、ADI、Infineon...

关键字: 数字电源 控制芯片 PWM

在电力电子技术飞速发展的今天,开关电源凭借高效、小型化、轻量化等优势,广泛应用于通信、计算机、工业控制等领域。而三端 PWM 开关作为开关电源的核心控制部件,其性能直接影响着开关电源的整体表现。本文将深入探讨三端 PWM...

关键字: PWM 开关电源 控制器

在电子设备的电源供应领域,如何实现高效且稳定的供电一直是工程师们不懈追求的目标。开关稳压器因其较高的效率在众多应用中得到广泛使用,然而,其固有的噪声问题却常常成为限制其进一步应用的瓶颈。尤其是在为对噪声极为敏感的设备,如...

关键字: 稳压器 噪声 滤波器

在音响系统的搭建与调试过程中,众多音响爱好者往往将大量精力聚焦于音箱的品质、功放的功率以及音源的优劣上,却常常忽视了一个对音质有着深远影响的关键要素 —— 音响电源滤波器。实际上,音响电源滤波器在整个音响系统里占据着举足...

关键字: 音响系统 滤波器 音源
关闭