当前位置:首页 > 工业控制 > 电子设计自动化

引言
现代雷达普遍采用相参信号来进行处理,而如何获得高精度基带数字正交(I,Q)信号是整个系统信号处理成败的关键。传统的做法是采用模拟相位检波器来得到I、Q信号,其正交性能一般为:幅度平衡在2%左右,相位正交误差在2°左右,即幅相误差引入的镜像功率在-34 dB左右。这样的技术性能限制了信号处理器性能的提高。为此,近年来提出了对低中频直接采样恢复I、Q信号的数字相位检波器。随着高位、高速A/D的普遍应用,数字相位检波方法的实现已成为可能。

本文介绍了一种正交相干检波方法,并给出了其FPGA的实现方案。

1 基本原理
1.1 中频信号分解的基本原理
一个带通信号通常可表示为:

其中,xI(t)、xQ(t)分别是s(t)的同相分量和正交分量。ω0为载频,a (t)、φ(t)分别为包络和相位。它们之间具有如下关系:

所构成的复包络信号为,该信号包含了式(1)中的所有信息。
要对中频信号进行直接采样,首先要保证采样后的频谱不发生混叠。根据基本的采样理论,即Nvquist采样定理要求以不低于信号最高频率两倍的采样速率对信号直接采样,才能保证所得到的离散采样值能够准确地确定信号。然而,如果信号的频率分布在某一有限频带上,而且信号的最高频率fH远大于信号的带宽,那么,此时若仍按Nyquist采样率来采样,则其采样频率就会很高,以致难以实现,或是后续处理的速度不能满足要求。因此,此时就要用到带通采样理论。
所谓带通采样定理,即设一个频率带限信号选x(t),其频带限制在(fL,fH)内,此时,如果其采样速率满足:

式中,n取能满足fs≥2(fH-fL)的最大正整数(O,1,2,……),则用fs进行等间隔采样所得到的信号采样值就能准确地确定原始信号。
式(4)中的fs用带通中心频率f0和频带宽度B可表示为:

其中,,n为整数,且要求满足fs≥2B,B为信号带宽。
值得指出的是,上述带通采样定理适用的前提条件是:只允许在其中的一个频带上存在信号,而不允许在不同的频带上同时存在信号,否则将会引起信号混叠。
1.2 Bessel插值法基本原理
设A/D变换输入的窄带中频信号为:

式中,A(t)为幅度,f0为中频频率,φ(t)为初相,τ为回波脉冲宽度。
假设式(5)中n=2,则采样频率。事实上,若对窄带中频信号采样,则第N个采样点离散形式为:

式中,为采样间隔。

另外,由贝塞尔内插公式知,其8点中值公式为:

式中,I2、I4、I6、I8为已知点,为,I2、I4、I6、I8的中值点。
在实际应用中,考虑到FPGA的特性,可将
(8)式改写成以下形式:

这样,对于下列时间序列:Q1、I2、Q3、I4、Q5、I6、Q7、I8,按式(9)即可求出,而Q5即为两组正交信号。由此就可得到内插运算的原理框图如图1所示。




2 基于FPGA的实现方案
首先将输入FPGA的一路12位数字信号中的每一位都与时钟信号进行异或运算,以使I’(n)=x(2n)(-1)n和Q’(n)=x(2n+1)(-1)n+1,从而达到符号修正的目的。经过修正,输出的数字信号序列是一个由I的偶数项和Q的奇数项交替出现所组成的序列,即:I0,Q1,I2,Q3,I4,Q5,…,I2n,Q2n+1…。为实现Bessel插值,还需要得到某时刻Q2n+1值所对应的I的偶数项(I2n-2,I2n,I2n+2和I2n+4)。鉴于移位寄存器有延时功能,可使用12片移位寄存器74164取出I的偶数项序列,同时分离的还有相应的Q2n+1一路信号。接着,I的偶数项序列经过加法器电路进行有符号加、减法运算。由于Bessel插值中的分母均为2的整数幂,因而用右移来实现2的整数幂除法非常方便。其实现框图如图2所示。


该FPGA实现方法,由于只涉及移位、简单门和加减法运算,因此,用FPGA实现起来很方便,也可以获得较高的运算速率。

3 基于FPGA的硬件仿真结果
为便于观察,仿真时可设定输入信号A (t)为常数,A/D的采样率fs为8 MHz来对信号进行中频采样并插值,以得到二路正交信号。运用QuartusⅡ的仿真结果如图3所示。


图3中,data为A/D采样后的输入信号,xor为符号修正后的信号,i_out,q_out为输出信号。
之后,将仿真程序下载到电路板中的FPGA(使用的是ALTERA公司的EPlC3T144C7芯片)中,便可用示波器观察到如图4所示的仿真结果。


从图4可以看出,I,Q两路输出为相似的波形,符合前面的设定A(t)为常数;其中图4(a)为图4(b)的展开图,由图4可以看出,I,Q两路
信号存在相位上的差异。

4 结束语
本文详细介绍了中频直接正交采样及Bessel插值理论,并基于这一理论,用FPGA将一路中频信号分解成了两路正交数字信号,本文同时重点给出了用FPGA实现这一过程的详细方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业...

关键字: FPGA 核心板 开发板

在现代电子系统中,现场可编程门阵列(FPGA)凭借其开发时间短、成本效益高以及灵活的现场重配置与升级等诸多优点,被广泛应用于各种产品领域。从通信设备到工业控制,从汽车电子到航空航天,FPGA 的身影无处不在。为了充分发挥...

关键字: 可编程门阵列 FPGA 数字电源

2025年8月4日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 即日起开售Altera®的Agilex™ 3 FPGA C系列开发套件。此开...

关键字: FPGA 边缘计算 嵌入式应用

内窥镜泛指经自然腔道或人工孔道进入体内,并对体内器官或结构进行直接观察和对疾病进行诊断的医疗设备,一般由光学镜头、冷光源、光导纤维、图像传感器以及机械装置等构成。文章介绍了一款基于两片图像传感器和FPGA组成的微型3D内...

关键字: 微创 3D内窥镜 OV6946 FPGA

运用单片机和FPGA芯片作为主控制器件 , 单片机接收从PC机上传过来的显示内容和显示控制命令 , 通过命令解释和数据转换 , 生成LED显示屏所需要的数据信号和同步的控制信号— 数据、时钟、行同步和面同步 。FPGA芯...

关键字: 单片机 FPGA LED显示屏

在异构计算系统中,ARM与FPGA的协同工作已成为高性能计算的关键架构。本文基于FSPI(Fast Serial Peripheral Interface)四线模式,在150MHz时钟频率下实现10.5MB/s的可靠数据...

关键字: ARM FPGA FSPI

在全球FPGA市场被Xilinx(AMD)与Intel垄断的格局下,国产FPGA厂商高云半导体通过构建自主IP核生态与智能时序约束引擎,走出差异化高端化路径。本文深入解析高云半导体FPGA工具链的两大核心技术——全栈IP...

关键字: FPGA 高云半导体

2025年6月12日,由安路科技主办的2025 FPGA技术沙龙在南京正式召开,深圳市米尔电子有限公司(简称:米尔电子)作为国产FPGA的代表企业出席此次活动。米尔电子发表演讲,并展出米尔基于安路飞龙派的核心板和解决方案...

关键字: FPGA 核心板 开发板

高 I/O、低功耗及先进的安全功能,适用于成本敏感型边缘应用

关键字: FPGA I/O 机器视觉

本文讨论如何为特定应用选择合适的温度传感器。我们将介绍不同类型的温度传感器及其优缺点。最后,我们将探讨远程和本地检测技术的最新进展如何推动科技进步,从而创造出更多更先进的温度传感器。

关键字: 温度传感器 CPU FPGA
关闭