当前位置:首页 > 单片机 > 单片机
[导读]如何在硬件体系结构已定的情况下,使I/O或存储器数据传输效率最高,成为SPI使用的一个关键问题。

    Freescale系列的MCU大部分都存在一个SPI模块,它是一个同步串行外围接口,允许MCU与各种外周设备以串行方式进行通信。

    目前,Freescale系列的大多数单片机总线不能外部加以扩展,当片内I/O或者存储器不能满足需求时,可以使用SPI来扩展各种接口芯片。这是一种最方便的Free-scale系列单片机系统扩展方法。

    SPI系统主机最高频率=主机总线频率/2,从机最高频率=从机总线频率,即硬件体系决定了SPI的最高工作频率。如何在硬件体系结构已定的情况下,使I/O或存储器数据传输效率最高,成为SPI使用的一个关键问题。

1 同步串行传输SPI结构及常规操作
   
图1为Freescale同步串行传输SPI的体系结构图。

    对Freescale同步串行传输体系来说,一般有两种操作模式:
    ①利用中断通知已经传输结束,或者接收完成;
    ②采用轮询方式,读取相应寄存器位置,判断传输是否完成。
    无论是哪种模式,其常规操作流程(无配置过程)均如图2所示。


2 常规操作中的时间浪费
   
从图2中可以看出,当CPU向SPI数据寄存器中写入1字节数据后,必须等待,直至SPI模块通知传输结束,才能写入下一个字节。这是由于SPI数据模块由两部分构成:一部分是数据寄存器;另一部分是移位寄存器。当CPU向SPI数据寄存器写入1字节后,SPI模块需要将8位数据传入移位寄存器,在每个SPI时钟周期内传出1位数据。由于采样的原因,SPI的最大速率=BUS_CLK/2,所以当CPU向SPI写入一个8位数据后,必须等待8×2的时间单位,用于移位寄存器将数据串行输出。在该等待时间内,SPI模块处于工作状态,而CPU则处于等待状态。

3 SPI操作的一种优化设计
   
根据第2节的分析可以得出,常规SPI操作中的时间浪费在于——移位寄存器将数据串行传输时,CPU完全处于等待状态。如何利用这个等待时间,就是提高SPI系统效率的关键所在。下面是一段标准的SPI读数据操作(省略了清理寄存器操作):

   
    为了更加清楚地了解程序的操作过程,对上面这段代码进行反汇编:


    从上面这段程序可以很清楚地看到,程序将在①处等待,直至移位寄存器将数据传输完毕。等待时间为8个SPI时钟周期,如果采用最高速度1/2总线时钟,那么总共需要等待16个总线时钟。如果能将程序进行一定调整,将一些操作转移到需要等待的这个时间段内,那么可以避免全部或者部分的浪费。①处的操作需要5个总线周期,实际可以利用的时间为11个总线时钟。考虑到汇编中将数据传送到数据寄存器的操作,实际是由两部分构成:第一步,将数据读入A寄存器;第二步,将A寄存器中的值存入SPID数据寄存器中。在Freescale的单片机指令集中,将数据存入A寄存器消耗4个总线周期;INCX需要一个总线周期;判断数据是否为空的CPX指令需要3个时钟周期;决定是否退出循环Beq需要3个总线周期。将这4个操作转移到等待的时间内,那么等待数据从移位寄存器移出的时间被合理地利用,从而使得传输速度达到最高。
    程序修改如下:


4 优化后的SPI操作与常规SPI操作比较
   
改进后的SPI操作与传统方式的SPI操作分别如图3和图4所示。

    图3和图4是利用Agilent 54622D对主设备为MC9S08GB60,从设备为MCl3192的SPI传输采样。其中,MC9S08GB60总线速度为4 Mbps,SPI传输率为1 Mbps;图3中示波器每格是2μs,而图4中每格为5μs。一次SPI数据传输3字节,比较两图,可以很清楚地看到:采用传统方式的SPI操作,在每个字节数据之间的停留时间甚至超过自身传输时间;而改进后的SPI传输,每个字节之间几乎不存在等待时间。


结语
   
这种改进,从本质上来说,是根据SPI系统自身的特性,调整、优化软件操作结构,使系统在不改变硬件的条件下,提高工作效率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

当使用导线连接外部设备或芯片时,导线不可过长,一般控制在 20CM 以内,IIC、SPI、UART 等数字接口数据线驱动能力有限,过长的导线会导致通讯波形迟缓。当导线确实无法缩短时,可通过降低通讯速率的方法来解决、缓解通...

关键字: 可编程USB UART I2C SMBusS SPI

芯片选择下拉框内列出的每一个备选芯片的驱动文件和数据手册位于S2STool 工具文件夹中的chips 文件夹内,每一个芯片需要 1 个驱动文件和 1 个数据手册文件,用户可自行打开编辑,或者创建新的芯片驱动文件。

关键字: 可编程USB UART I2C SMBusS SPI

S2STool 是为 S2S 固件开发的测试工具,运行于 Windows 平台,内置串口调试助手和 S2S 参数配置工具,支持动态解析自定义的芯片驱动,用户可自行编写、修改、增加任何芯片的驱动程序, 方便对芯片进行测试和...

关键字: 可编程USB UART I2C SMBusS SPI

DS1302 是实时时钟芯片,SPI 接口,可以对年、月、日、周、时、分、秒进行计时,且具有闰年补偿等多种功能。DS1302 内部有一个 31×8 的用于临时性存放数据的 RAM 寄存器。

关键字: 可编程USB UART I2C SMBusS SPI

GD25Qxx 是四线SPI 接口的 FLASH 芯片,最大容量可达 16Mbytes。板上集成有 GD25Q64 芯片, 每页 256 字节,每扇区 16 页(4k 字节),每块区 256 页(64k),写入前必须先擦...

关键字: 可编程USB UART I2C SMBusS SPI CAN USB2S

VM501/511振弦采集模块 是稳控科技生产的振弦传感器测量模块,具有IIC 接口和 UART 接口。IIC 地址可通过UART 任意设置,假设其地址为 0xB0。

关键字: 可编程USB UART I2C SMBusS SPI

SHT3x-DIS 是 IIC 接口的温度、湿度传感器芯片,可工作于单次测量或连续自动测量模式。USB2S 已有 1 片 SHT31-DIS 芯片,芯片地址为 0x88。 SHT3X-DIS 的输出温度和湿度均为 3...

关键字: 可编程USB UART I2C SMBusS SPI

驱动程序安装后,计算机通过 COMx 与 MCU 进行通讯,当 USB2S 的 UART 透明传输功能为开启状态时(默认),MCU 可将 UART1 与UART2 的双向数据进行透明转发,即:实现了计算机的COMx 端口...

关键字: 可编程USB UART I2C SMBusS SPI

USB2S 支持基于 STC 单片机的二次开发,若有需要,可参照原理图和单片机型号手册自行开发具有特殊功能的固件程序。

关键字: 可编程USB UART I2C SMBusS SPI

可编程 USB 转 UART/I2C/SMBus/SPI/CAN/1-Wire 适配器 USB2S(USB To Serial ports)是多种数字接口物理层协议转发器,自带强大灵活的 S2S 协议固件程序,支持嵌入C...

关键字: 可编程USB UART I2C SMBusS SPI

单片机

21600 篇文章

关注

发布文章

编辑精选

技术子站

关闭