当前位置:首页 > 单片机 > 单片机
[导读]移植环境1,主机环境:VMare下CentOS 5.5 ,1G内存。2,集成开发环境:Elipse IDE3,编译编译环境:arm-linux-gcc v4.4.3,arm-none-linux-gnueabi-gcc v4.5.1。4,开发板:mini2440,2M nor flash,128M nand flash

移植环境

1,主机环境:VMare下CentOS 5.5 ,1G内存。

2,集成开发环境:Elipse IDE

3,编译编译环境:arm-linux-gcc v4.4.3,arm-none-linux-gnueabi-gcc v4.5.1。

4,开发板:mini2440,2M nor flash,128M nand flash。

5,u-boot版本:u-boot-2009.08

6,linux 版本:linux-2.6.32.2

7,参考文章:

【1】嵌入式linux应用开发完全手册,韦东山,编著。

【2】Mini2440 之Linux 移植开发实战指南

【3】http://linux.chinaunix.net/techdoc/system/2009/08/24/1131864.shtml

3.1,移植DM9000 网卡驱动

【1】设备资源初始化

Linux-2..6.32.2 已经自带了完善的DM9000 网卡驱动驱动(源代码位置:linux-2.6.32.2/drivers/net/dm9000.c),它也是一个平台设备,因此在目标平台初始化代码中,只要填写好相应的结构表即可,具体步骤如下:
(1)确认已经添加了驱动所需的头文件 dm9000.h:

用gedit打开linux-2.6.32.2/arch/arm/mach-mini2440.c,定位到55行附近,加入dm9000.h,如下所示:

#include

#include
#include
#include
#include
#include
#include

(2)填充该平台设备的资源设置

定位到210行附近,如入下面代码:

tatic struct s3c2410_platform_nand mini2440_nand_info = {
.tacls= 20,
.twrph0= 60,
.twrph1= 20,
.nr_sets= ARRAY_SIZE(mini2440_nand_sets),
.sets= mini2440_nand_sets,
.ignore_unset_ecc = 1,
};
/* DM9000AEP 10/100 ethernet controller *///定义DM9000 网卡设备的物理基地址,以便后面用到
#define MACH_MINI2440_DM9K_BASE (S3C2410_CS4 + 0x300)

//再填充该平台设备的资源设置,以便和 DM9000 网卡驱动接口配合起来

static struct resource mini2440_dm9k_resource[] = {
[0] = {
.start = MACH_MINI2440_DM9K_BASE,
.end = MACH_MINI2440_DM9K_BASE + 3,
.flags = IORESOURCE_MEM
},
[1] = {
.start = MACH_MINI2440_DM9K_BASE + 4,
.end = MACH_MINI2440_DM9K_BASE + 7,
.flags = IORESOURCE_MEM
},
[2] = {
.start = IRQ_EINT7,
.end = IRQ_EINT7,
.flags = IORESOURCE_IRQ | IORESOURCE_IRQ_HIGHEDGE,
}
};
/*
* * The DM9000 has no eeprom, and it's MAC address is set by
* * the bootloader before starting the kernel.
* */
static struct dm9000_plat_data mini2440_dm9k_pdata = {
.flags = (DM9000_PLATF_16BITONLY | DM9000_PLATF_NO_EEPROM),
};

static struct platform_device mini2440_device_eth = {
.name = "dm9000",
.id = -1,
.num_resources = ARRAY_SIZE(mini2440_dm9k_resource),
.resource = mini2440_dm9k_resource,
.dev = {
.platform_data = &mini2440_dm9k_pdata,
},
};
static struct platform_device *mini2440_devices[] __initdata = {
&s3c_device_usb,
&s3c_device_lcd,
&s3c_device_wdt,
&s3c_device_i2c0,
&s3c_device_iis,
&s3c_device_nand, //;把nand flash 设备添加到开发板的设备列表结构
&mini2440_device_eth,//;把网卡平台设备添加到开发板的设备列表结构
};

static void __init mini2440_map_io(void)

【2】调整DM9000 所用的位宽寄存器

因为 Linux-2.6.32.2 的DM9000 网卡驱动并不是专门为mini2440 准备的,所以还要在其源代码中做一些移植工作,如下步骤。

(1)打开linux-2.6.32.2/drivers/net/dm9000.c,定位到41行附近,添加2410 相关的配置定义,如下红色部分:

#include
#include
#include

#include "dm9000.h"
#if defined(CONFIG_ARCH_S3C2410)
#include
#endif

(2) 在dm9000 设备的初始化函数中添加如下红色部分,这里是配置DM9000 所用片选总线的时序,因为mini2440 目前只有一个通过总线外扩的设备,在此设备驱动中直接修改相关的寄存器配置会更加容易理解一些,当然这部分也可以放到mach-mini2440.c 中。

打开linux-2.6.32.2/drivers/net/dm9000.c,定位到1555行附近,加入下面代码:

static int __init
dm9000_init(void)
{
#if defined(CONFIG_ARCH_S3C2410)
unsigned int oldval_bwscon = *(volatile unsigned int *)S3C2410_BWSCON;
unsigned int oldval_bankcon4 = *(volatile unsigned int *)S3C2410_BANKCON4;
*((volatile unsigned int *)S3C2410_BWSCON) =
(oldval_bwscon & ~(3<<16)) | S3C2410_BWSCON_DW4_16 | S3C2410_BWSCON_WS4 | S3C2410_BWSCON_ST4;
*((volatile unsigned int *)S3C2410_BANKCON4) = 0x1f7c;
#endif
printk(KERN_INFO "%s Ethernet Driver, V%sn", CARDNAME, DRV_VERSION);

return platform_driver_register(&dm9000_driver);
}

【3】需要注意的是,本开发板所用的DM9000 网卡并没有外接EEPROM 用以存储MAC 地址,因此系统中的MAC 地址是一个“软”地址,也就是可以通过软件进行修改,可以随意改为其他值。

打开linux-2.6.32.2/drivers/net/dm9000.c,定位到1461行附近,加入下面一行代码:

static int __devinit
dm9000_probe(struct platform_device *pdev)
{

... ...

/* try reading the node address from the attached EEPROM */

//;尝试从EEPROM 读取MAC 地址
for (i = 0; i < 6; i += 2)
dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);

if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
mac_src = "platform data";
memcpy(ndev->dev_addr, pdata->dev_addr, 6);
}

if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */

mac_src = "chip";
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
}

//;使用“软”MAC 地址: 08:90:90:90:90:90
memcpy(ndev->dev_addr, "x08x90x90x90x90x90", 6);

if (!is_valid_ether_addr(ndev->dev_addr))
dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
"set using ifconfign", ndev->name);

platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);

if (ret == 0)
printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)n",
ndev->name, dm9000_type_to_char(db->type),
db->io_addr, db->io_data, ndev->irq,
ndev->dev_addr, mac_src);
return 0;

out:
dev_err(db->dev, "not found (%d).n", ret);

dm9000_release_board(pdev, db);
free_netdev(ndev);

return ret;
}

实际上到此为止 DM9000 就已经移植结束了。

3.2,编译测试

【1】在编译之前,需要确认在内核中已经配置了网卡驱动

在内核目录下执行:

[root@localhost linux-2.6.32.2]# make menuconfig

在打开的配置菜单Device Drivers --->Network device support ---> Ethernet (10 or 100Mbit) --->,可以看到如下图

DM9000 已经被选中,这是因为Linux-2.6.32.2默认的内核配置已经加入了DM9000 的支持。


【2】编译

[root@localhost linux-2.6.32.2]# make clean
[root@localhost linux-2.6.32.2]# make uImage

编译完成后生成zImage 和 uImage

【3】进行网卡驱动测试

(1)采用友善官方已经移植好的根文件系统,可以从其提供的光盘映像/linux目录下直接复制过来。
[root@localhost ~]# cd linux-test
[root@localhost linux-test]# ls
busybox-1.13.3 mkyaffs2image.tgz
busybox-1.13.3-mini2440.tgz myrootfs
busybox-1.18.4rootfs_qtopia_qt4
busybox-1.18.4.tar.bz2 rootfs_qtopia_qt4-20110304.tar.gz
linux-2.6.32.2 usr
linux-2.6.39 yaffs2
[root@localhost linux-test

(2)将其复制到宿主机/nfsboot目录下并命名为roorfs

[r

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

CPU亲和度通过限制进程或线程可以运行的CPU核心集合,使得它们只能在指定的CPU核心上执行。这可以减少CPU缓存的失效次数,提高缓存命中率,从而提升系统性能。

关键字: Linux 嵌入式

在Linux系统性能优化中,内存管理与网络连接处理是两大核心领域。vm.swappiness与net.core.somaxconn作为关键内核参数,直接影响系统在高负载场景下的稳定性与响应速度。本文通过实战案例解析这两个...

关键字: Linux 内存管理

对于LLM,我使用b谷歌Gemini的免费层,所以唯一的成本是n8n托管。在使用了n8n Cloud的免费积分后,我决定将其托管在Railway上(5美元/月)。然而,由于n8n是开源的,您可以在自己的服务器上托管它,而...

关键字: 人工智能 n8n Linux

在Linux系统管理中,权限控制是安全运维的核心。本文通过解析/etc/sudoers文件配置与组策略的深度应用,结合某金融企业生产环境案例(成功拦截98.7%的非法提权尝试),揭示精细化权限管理的关键技术点,包括命令别...

关键字: Linux 用户权限 sudoers文件

Linux内核中的信号量(Semaphore)是一种用于资源管理的同步原语,它允许多个进程或线程对共享资源进行访问控制。信号量的主要作用是限制对共享资源的并发访问数量,从而防止系统过载和数据不一致的问题。

关键字: Linux 嵌入式

在云计算与容器化技术蓬勃发展的今天,Linux网络命名空间(Network Namespace)已成为构建轻量级虚拟网络的核心组件。某头部互联网企业通过命名空间技术将测试环境资源消耗降低75%,故障隔离效率提升90%。本...

关键字: Linux 云计算

在Linux内核4.18+和主流发行版(RHEL 8/Ubuntu 20.04+)全面转向nftables的背景下,某电商平台通过迁移将防火墙规则处理效率提升40%,延迟降低65%。本文基于真实生产环境案例,详解从ipt...

关键字: nftables Linux

在Linux设备驱动开发中,等待队列(Wait Queue)是实现进程睡眠与唤醒的核心机制,它允许进程在资源不可用时主动放弃CPU,进入可中断睡眠状态,待资源就绪后再被唤醒。本文通过C语言模型解析等待队列的实现原理,结合...

关键字: 驱动开发 C语言 Linux

在Unix/Linux进程间通信中,管道(pipe)因其简单高效被广泛使用,但默认的半双工特性和无同步机制容易导致数据竞争。本文通过父子进程双向通信案例,深入分析互斥锁与状态机在管道同步中的应用,实现100%可靠的数据传...

关键字: 管道通信 父子进程 Linux

RTOS :RTOS的核心优势在于其实时性。它采用抢占式调度策略,确保高优先级任务能够立即获得CPU资源,从而在最短时间内完成处理。RTOS的实时性是通过严格的时间管理和任务调度算法实现的,能够满足对时间敏感性要求极高的...

关键字: Linux RTOS
关闭