当前位置:首页 > 医疗电子 > 医疗电子
[导读] 想象一下,你是一家大城市急救室的医疗技师。你在各个病房之间穿梭,使用便携式诊断设备协助医护人员做诊断。工作压力大,病人源源不断,你根本没时间去找插座,把你的设备插上去。你大概愿意把设备放到一个地方,让

 想象一下,你是一家大城市急救室的医疗技师。你在各个病房之间穿梭,使用便携式诊断设备协助医护人员做诊断。工作压力大,病人源源不断,你根本没时间去找插座,把你的设备插上去。你大概愿意把设备放到一个地方,让它自动充电,这样你就能到下一个病人和伤者那里,他们需要动作迅速和高效的医护人员。对你和病人来说幸运的是,无线充电已经是一种现成的技术。

标准

行业标准规范正在引领无线充电的发展。无线Wireless Power Consortium‘s (WPC)标准也被称为Qi(发音“奇”)。这个规范又分为系统的三个核心部分—功率发射机、功率接收机,以及两个设备之间的通信协议。这个标准的主要特性是(见下面的框图):

 

 

来源:无线充电联盟网站

一种从底座到便携式设备的非接触式功率传输方法,这种方法的物理基础是线圈之间的近场电磁感应。

使用一个次级(或接收)线圈,传输大约5W功率。

传输范围内的工作频率为110Hz至 205kHz

在底座表面摆放便携式设备的方式有两种:

1.一种方式是在底座表面的指定位置摆放便携式设备,底座通过该表面的一个或几个固定的位置提供能量。

2.自由定位允许便携式设备随意摆放在充电站表面,从该表面的任何地方提供能量。

非常低的待机功耗是可以达到的,这取决于具体的实现方法。

能够灵活地把系统集成进便携式设备

一个简单的通信协议就能使便携式设备能够完全控制能量传输过程。

能量传输过程分为4个阶段:

1. 选择阶段:功率发射机监视充电接口,探测要充电的设备是否摆放到位。如果没有探测到设备,功率发射机将不停地Ping功率接收机。如果在给定的时间里没有探测到要充电的设备,功率发射机就会进入待机模式。

2. Ping阶段 :类似于声纳,功率发射机发出一个数字Ping信号,探测可充电设备。如果探测到设备,功率发射机就把功率信号保持在ping信号的电平,然后进入识别和配置阶段。如果没有探测到设备,功率发射机就返回到选择阶段。

3. 识别和配置阶段:功率发射机与功率接收机协商,确定给接口上需要充电的设备提供多大的功率。如果设备从接口上移开,功率发射机就返回到选择阶段。

4. 功率传输阶段:功率发射机向功率接收机提供能量,根据功率接收机的反馈情况调整所需要的电流。在功率传输过程中出现异常情况时,安全功能会适时关闭功率传输,并返回到选择阶段。

这个标准已经得到电子行业的各个领域内超过90家公司的支持。

技术

无线充电使用近场电磁感应原理,将能量从充电底座(pad)传送到便携设备。在不断变化的距离上,充电底座里的发射机线圈(Tx)向嵌入在手机这样的便携式设备里的接收机线圈(Rx)传送能量。充电底座里的发射机/初级线圈在上电时产生一个类似于传统变压器的电磁场,感应电流流过便携式设备上的次级线圈。(充电底座有一个功率转换电路,将电能转换为电磁场。在接收机端,功率拾取单元将电磁场重新转换为电能,对设备的电池充电)。发射机和接收机互相之间进行通信,控制充电过程。

Vishay Dale Electronics的IWAS系列Qi无线充电接收线圈/防护罩是第一批可用于符合WPC规范的器件的商用无线充电线圈。IWAS系列的效率达到 70%或更高,为接收线圈提供高磁导率防护罩,阻断充电磁通,防止其损坏敏感元件或电池。IWAS系列无线充电接收线圈/防护罩的性能不会受到永磁的不利影响。

IWAS线圈的优点

IWAS接收机线圈采用专利的IHLP?技术制造。线圈使用一个磁性导线线圈,装在一个复合材料的芯/防护罩上,使IWAS接收机线圈比竞争技术多了一些明显的优点:

无线充电接收线圈的高磁导率防护罩

防护罩材料特性

1.磁导率: 24

2.电阻率: 在100V下大于 10 MΩ

3.铁芯损耗:4000 mW/cc,在500高斯, 250 kHz下

4.磁饱和:50 %,在400高斯下(可达350 Oe)

高饱和铁粉—不受永磁的影响

坚固耐用的结构

不需要充电接口连接器,而连接器在清洗/消毒的时候会腐蚀或泄漏

一个充电区可放多个设备,不用考虑制造商

尺寸和形状可以定制,以适合任何符合WPC规范的设备

符合RoHS指令2002/95/EC

安装

 

 

IWAS-4832FF-50 - 1∈-IWAS-3827EC-50

IWAS型接收线圈是用一种非常薄、用压缩铁粉做成的薄片生产的。工程师专门设计了一种特殊的扁平磁体导线线圈,以降低铜损并增大磁通,然后把线圈安装到薄片上。从线圈上剥出引线,镀锌,以便连到客户的电路上。然后把完整的IWAS接收线圈与便携式医疗电子设备的背面结合为一个整体,连到通信/充电电路上。设备就可以安放在任何符合Qi规范的充电底座上。

测试

无线充电的医疗设备需要独立的实验室对电磁兼容性进行认定,一些可用的标准如下:

FFC parts 15和 18

IC ICES-001

IC 射频标准规范 (RSS)

EU EMC 指令

R&TTE 指令

有很多独立的实验室可以进行这些测试。

结论

无线充电离我们已经近在咫尺。无线充电首先会用在手机等较小的设备上,现在已经扩展到医疗和其他便携式设备上,甚至是电动汽车上。IWAS接收线圈将使您的移动式医疗设备能够高效、可靠地充电。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025年8月28日,中国北京讯 ——全球领先的技术分销商和解决方案提供商安富利正巩固其在无线充电解决方案领域的领导地位,该市场持续呈现显著增长态势。通过持续投资先进无线技术和扩展合作伙伴生态系统,安富利正赋能客户创新,...

关键字: 安富利 无线充电 ConvenientPower

物联网(M2M)设备有线充电的维护成本高、电池更换困难等问题日益突出。电磁感应与射频能量收集的混合供电系统,通过结合电磁感应的高功率传输与射频能量收集的长距离覆盖特性,为M2M设备构建起无需人工干预的持续供电解决方案。本...

关键字: M2M 无线充电

智慧医疗加速落地,医疗设备的供电稳定性已成为关乎患者生命安全的核心命题。传统供电方案中,分散的电源适配器、复杂的布线系统以及单点故障风险,在ICU监护仪、手术机器人等关键设备的应用场景中暴露出致命缺陷。以太网供电(PoE...

关键字: 医疗设备 PoE

在医疗科技飞速发展的当下,医疗设备的安全性与可靠性成为保障患者生命健康和医疗工作顺利开展的关键要素。电源隔离设计作为医疗设备电气安全的核心环节,对符合IEC 60601这一国际医疗电气安全标准起着决定性作用。

关键字: 医疗设备 电源隔离设计 IEC 60601

在当今快速发展的电子领域,氮化镓(GaN)技术正凭借其卓越的性能,在众多应用市场中崭露头角,其普及率在近年来得到了显著提升。据相关数据显示,全球 GaN 功率元件市场规模预估从 2023 年的 2.71 亿美元左右上升至...

关键字: 氮化镓 无线充电 服务器电源

在医疗设备高度依赖电子系统的当下,电磁兼容性(EMC)风险评估已成为保障患者生命安全的核心环节。生命维持系统(如呼吸机、体外循环机、心脏起搏器)的电磁抗扰度直接决定其在复杂电磁环境中的可靠性,而失效模式与影响分析(FME...

关键字: 医疗设备 EMC

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电

电动汽车无线充电技术向高功率、高安全、高智能化加速演进,LLC谐振控制、高频异物检测(FOD)与双向能量流设计的协同创新,正成为突破系统效率、安全边界与功能拓展的核心路径。从静态充电到动态无线供电,从单向能量传输到车网互...

关键字: 电动汽车 无线充电

在医疗设备领域,凸轮机构作为实现精密运动的核心组件,其精度直接决定了设备的诊断效能与治疗安全性。从CT扫描检查床的毫米级定位到手术器械的微米级操控,凸轮技术正面临从宏观到微观的多维度精度挑战。这场精度革命不仅需要突破材料...

关键字: 医疗设备 凸轮

医疗设备智能化进程,数字信号处理器(DSP)作为核心计算单元,承担着实时处理生物电信号、医学影像等敏感数据的重任。然而,随着医疗设备与网络互联的深化,数据泄露风险显著增加。美国《健康保险流通与责任法案》(HIPAA)明确...

关键字: 医疗设备 DSP
关闭