当前位置:首页 > 通信技术 > 通信技术
[导读] 一、无源互调介绍在无线通信系统中,日益增加的语音和数据信息必须在一个固定带宽中传输,无源互调失真已经成为限制系统容量的重要因素。就好像在有源器件中,当两个频率以上的信号以一个非线性形式混合在一起时,就

 一、无源互调介绍

在无线通信系统中,日益增加的语音和数据信息必须在一个固定带宽中传输,无源互调失真已经成为限制系统容量的重要因素。就好像在有源器件中,当两个频率以上的信号以一个非线性形式混合在一起时,就会产生一些伪信号,这就是无源互调信号。当这些伪互调信号落在基站的接收(上行)频段内时,接收机就会发生减敏现象。这种现象可以降低通话质量,或者降低系统的载干比(C/I),从而减少通信系统的容量。

造成无源互调的原因很多,其中包括机械接触不良,射频通道中的含铁导体,和射频导体表面的污染。事实上,很难准确预知器件的 无源互调值,测量所得的数据只能用来大致描述器件的性能。由于结构技术方面的微小改变都会导致互调指标的严重变化,所以一些生产厂商通过对产品100%的 检验来保证基站中使用的射频器件的无源互调水平都能满足指标要求。

当存在两个或两个以上频率时,基站的大功率传输通道中的每个组件和子系统都会产生互调失真。本文仅关注其中的一种组件:集成电缆。针对集成电缆产生的互调失真既是有方向性的,又是依赖于频率的理解,对于集成电缆的指标及其在通信基站中的使用是一个非常重要的因素。

二、电缆互调测试的实现

一 条集成电缆(或者是任何两端口射频器件)都有两种无源互调响应:反射互调和通过互调。图1为Summitek公司的无源互调分析仪测量这两个互调信号的原 理。在SI-1900A型设备中,通过端口1向集成电缆注入两个大功率信号,电缆的另一端与端口2连接。端口2作为这两个大功率信号的负载,并且其无源反 射互调很小,可忽略。在端口1处测量反射无源互调响应,在端口2处测量通过(即前向)无源互调。与目前使用的大多数无源互调测试设备不同的 是,Summitek公司的互调分析仪支持前向和反向互调响应的同时测量,而不需要重新接驳。这样可以避免重新接驳时所必须的配对和再配对操作,从而使反 射响应和通过响应的测量误差最小化。将该特性与Summitek分析仪的扫频互调测量功能相结合,就可以对电缆完整的互调特性做测量了。

图1(a) Summitek 无源互调失真分析仪对反射和通过互调响应的测试框图

图1(b)用于集成电缆互调测量的分析仪图片

三、电缆互调特性

图2中的模型有助于对集成电缆的反射和通过互调特性的理解。

图2 用来说明集成电缆反射和通过互调响应的模型

图 中的中间部分是集成电缆本身。在这个模型中,关键是假定集成电缆中只有接头部分产生互调。换句话说,尽管当信号沿着电缆的长度传输,电缆本身会产生损耗和 群时延,但是相对于接头,电缆本身不产生大的互调,可以用图2中H( )的传输函数来表示。用IMa和IMb来表示集成电缆接头产生的互调响应。在本模型中,我们假设互调只产生在每个接头中单一的一点上,并且假设互调一旦产 生后,其双向传输是等能量传输的。

模型的左边是端口1,该端口用来将两个+43dBm的信号注入集成电缆(见图1(a)的框图)。这两个信 号在图2中表示为向量A1和A2。无源互调测试系统本身也会产生互调,用向量IM1表示。注意,和该模型中的其他互调响应一样,IM1响应也是自其产生处 双向传输的。假定,端口1的互调响应和电缆a端的互调是协同定位的,换句话说,这两个互调源之间的电磁波距离可以忽略不计。

模型的右边是端口2,该端口也会产生一个不希望出现的小互调能量,以IM2表示。所有用于端口1的假设同样适用于端口2。通观完整的集成电缆无源互调的测量模型,以下几条值得关注:

每个测试端口都有与其相关的4个互调响应。其中两个是接头末端产生的,另两个是互调分析仪自身产物。

电缆b端的互调(IMb)和端口2的互调(IM2)会通过电缆反向传输,从而产生的反射互调响应可以在端口1处测量。

电缆a端的互调(IMa)和端口1的互调(IM1)会通过电缆进行传输,从而产生的通过互调响应可以在端口2处测量。

通过这个模型,集成电缆的互调值就可以被确定了。

四、使用模型预计互调特性

虽然预计一个给定的射频器件的互调绝对值是非常困难的,但是单个互调源之间的相互作用在图2的模型中可以很容易地被表现出来。

首先,我们已经知道了每一个互调源的三阶互调公式。以端口1和电缆a端的响应开始,互调响应为:

三阶互调的频率为:

w3 ≡2ω2 −ω1

其中

t:时间

IM1:端口1的三阶互调响应

IMa:电缆a端的三阶互调响应

σ1:端口1的互调系数,即端口1(=10[dBc/20.])的dBc响应的简单数字转化

σa:端口a的互调系数,即端口a(=10[dBc/20.])的dBc响应的简单数字转化

ω1, 2, 3:分别为载波1,载波2和产生的三阶互调响应的频率弧度

电缆b端和端口2的互调响应相对稍微复杂。两个载波产生的互调响应可以通过电缆传输函数H(w)表示。为了简化公式,和消除非线性功率对互调产物及其载波的影响,假设电缆是无损耗的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2024年教育数字化巨浪来袭,如何引领潮流、筑起行业壁垒? 成都2024年4月17日 /美通社/ -- 在信息技术飞速发展的今天,数字化已成为推动各行各业革新的强大引擎。特别是在教育领域,一场前所未有的变革正在悄然兴起...

关键字: AMD 数字化 智慧教育 集成

在这篇文章中,小编将对端口的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 端口 控制端口

舍弗勒展示直驱转台、集成角度测量系统轴承和精密减速机单元等创新解决方案 满足各类应用需求的主轴轴承  采用刚性高、无齿隙的精密减速机和驱动单元的新型自动化解决方案 德国施韦因富特2023年9...

关键字: 机床 减速机 主轴 集成

(全球TMT2023年9月8日讯)第24届中国国际光电博览会将于2023年9月6日-8日在深圳举行。三安集成出席,与行业同仁分享最新动态。在同期举办的2023 CIOE&YOLE国际论坛上,三安受邀在光收发器&...

关键字: 光电 集成 VCSEL PD

深圳2023年9月8日 /美通社/ -- 第24届中国国际光电博览会将于2023年9月6日-8日在深圳盛大举行,超过3000家国内外光电企业汇聚于此,面向光电行业及应用领域展示前沿的创新技术及综合解决方案。三安集成的光技...

关键字: 集成 光芯片 CIO VCSEL

电气化和智能化的发展趋势为舍弗勒带来新的增长机会 舍弗勒计划到2026年前,在全球范围内投入5亿欧元用于电机产能扩充和新产能建设 舍弗勒计划与VDL Groep合作开发自动驾驶穿梭巴士,首款展示车亮相展会...

关键字: 热管理 自动驾驶 MIDDOT 集成

(全球TMT2023年9月1日讯)8月31日,由软通动力主办,以“智联未来 科创领航”为主题的工业互联网创新发展论坛暨ConnectCity智改数转城市行首站在山城重庆举办。软通动力董事兼首席运营官车俊河表示,软通动力...

关键字: 工业互联网 数字化 集成 NEC

Nuvei 提供包括集成更多支付方式在内的全套解决方案,为这家中国运营商的全球扩张提供了特别支持 上海2023年9月5日 /美通社/ -- 加拿大金融科技公司Nuvei Corporation(下称"Nuve...

关键字: IP BSP 纳斯达克 集成

(全球TMT2023年9月1日讯)Experlogix宣布其数字商务(Digital Commerce)业务已成功扩展到北美市场。该平台于2023年6月底在北美推出,包括一套全面的B2B商务解决方案,旨在为企业组织提供...

关键字: LOGIX 集成 COM DIGITAL

北京和慕尼黑2023年9月3日 /美通社/ -- 在2023德国国际汽车及智慧出行博览会(IAA MOBILITY)上,宝马集团带来全球首发的BMW新世代概念车,展示了面向未来的出行理念——以人为本、智能为纲、责任为先。...

关键字: 人机交互 宝马 显示屏 集成
关闭
关闭