当前位置:首页 > 测试测量 > 测试测量
[导读]常用示波器的工程师都会发现一个现象,当示波器停止采样时,将原来的波形垂直放大后会存在锯齿状,这是什么原因呢?这里跟跟大家一起剖析一下。一、台阶波形 本文以ZDS4054Plus示波器为测试工具,图 1 如所示波形是在

常用示波器的工程师都会发现一个现象,当示波器停止采样时,将原来的波形垂直放大后会存在锯齿状,这是什么原因呢?这里跟跟大家一起剖析一下。

一、台阶波形

 

本文以ZDS4054Plus示波器为测试工具,图 1 如所示波形是在 200mv/div 档位下采样的,波形相对平稳。停止采样后,如果将垂直档位调至 50mv/div,则波形出呈现严重的锯齿状,如图 2 所示。为此很多人感到疑惑,为什么会出现这种现象?

 

图1 原信号波形

图2 放大后波形

二、原因阐述

1、运行状态下

当示波器处于【Run】时,示波器模拟前端会根据不同的垂直档位,始终会将信号的幅度调理到 ADC合适的范围内,再进行量化,所以运行状态下的波形放大,不会存在锯齿现象。

l在 200mv/div 的档位下,垂直分辨率(25 LSB/div)为 8mv

l在 50mv/div 的档位下,垂直分辨率(25 LSB/div)为 2mv

垂直档位越小,分辨率越高,则采集到的波形测量精度就越高,这个就是推荐波形尽量铺满格子的原因。

2、停止状态下

 

在停止状态下波形不进行采集,也就是停止状态无论垂直档位怎么变化,仍然会保持停止时(200mv/div)的垂直精度 8mv,所以当把波形的垂直方向放大 4 倍时(50mv/div),那么采样点与采样点之间的垂直距离就会变大,当然这仅仅只是进行数字化放大,示波器此时会进行插值保持,插值保持下波形会以阶梯的形式连接,这也是产生锯齿的原因。

图3 插值保持

三、理解误区:插值保持与插值算法有关么?

前面我们提到了插值保持,那么有的工程师可能就会想到,会不会是由于插值算法的原因导致了波形放大后出现了锯齿状呢?毕竟线性插值是以点的方式连接,出现锯齿状也很正常。答案是否定的,下面从原理层来分析一下。

首先解释一下何谓插值算法,对于很多示波器都会有不同的插值模式,常见的分为正弦插值和线性插值,在实际使用过程中,如果示波器ADC的采样率不足以恢复真实信号,我们需选择不同的插值方式进行测试分析:

1、正弦插值

 

正弦内插是示波器默认的插值方式,也是最常用的插值方式。通过正弦内插的方式,能够比较准确和平滑地还原真实波形信号。利用曲线来连接样点,通用性更强。这种方法弯曲信号波形,使之产生比纯方波和脉冲更为现实的普通波形。如图4所示为采样正弦插值的方式,观察到的放大后的波形。

图4 正弦插值

3、线性插值

线性内插是最简单的插值方式,计算量最小。在ADC的相邻采样数据点之间按照线性多项式的计算方式插入一个计算值,插入的这个点为相邻两个采样点连线上的值。如下图5所示位采用线性内插方式测试波形,是通过点与点之间的直接连接形成的波形,细节上能够

 

看到类似于锯齿波的形状,这种插值方式局限于直边缘的信号。

图5 线性插值

通过这两种插值方式对比,大家会发现正弦内插利用曲线连接采样点,线性内插通过点与点之间的连接形成波形,大家可能会倾向于线性插值的原因形成了放大之后的锯齿状。需要注意的是:插值算法是在ADC采样时进行的,当采样停止后,示波器才会进行插值保持,插值保持下采样点之间会以阶梯的形式连接,因此示波器停止下的放大只是单纯的数字化放大,是示波器插值保持的结果,这与使用何种插值算法完全无关。

四、总结

因此无论前面采用的是何种插值方式,采样停止后放大的波形都会以锯齿状呈现出来,这是插值保持的原因,也是完全正常的。因此,我们在观测波形的时候一定要让波形尽量铺满整个屏幕,如果波形出现了锯齿,也要清楚锯齿的原因来自于哪里。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

传统的动态RDS(on)测量技术依赖于二极管钳位电路,使示波器能够以足够的分辨率测量漏源电压,而不会使示波器输入过载。泰克为4、5和6系列MSO示波器推出的宽禁带双脉冲测试(WBG-DPT)测量软件引入了一种新的软件钳位...

关键字: 示波器 测试测量

是德科技京东自营旗舰店在本月9日重磅开业,开业期间(9日至11日每天10:00)推出"限时秒杀"活动,多款高端测试仪器以超值优惠价格回馈广大科研工作者和工程师。本次活动精选三款明星产品:EDU36311A三路输出台式电源...

关键字: 示波器 台式电源 函数发生器

示波器的存储深度是指示波器单次触发所能采集和存储的采样点数量,决定了仪器能够捕获和分析信号的时间长度和细节。

关键字: 示波器

在电子测量领域,示波器作为核心工具,其技术演进始终与信号处理需求深度绑定。随着物联网、人工智能、5G通信等技术的爆发式增长,示波器正从传统时域分析向智能化、多域融合方向转型,而智能耦合技术作为连接信号采集与处理的关键环节...

关键字: 智能耦合 示波器

在电子测量领域,示波器作为观察电信号波形的核心工具,其输入耦合方式的选择直接影响测量精度与信号完整性。示波器通常提供直流耦合(DC)、交流耦合(AC)和接地耦合(GND)三种模式,每种模式通过不同的电路设计实现对信号的处...

关键字: 示波器 输入耦合

在电子测量中,示波器耦合方式与探头衰减比的协同设置直接影响信号保真度与测量精度。某通信设备调试案例中,工程师因未协调AC耦合与10:1衰减比,导致100MHz时钟信号相位误差达15°,误判为电路设计缺陷。这一典型问题揭示...

关键字: 示波器 耦合

在电子测量领域,示波器作为观察电信号波形的核心工具,其耦合方式设置直接影响测量精度与信号完整性。然而,工程师在实际操作中常因对AC/DC耦合原理理解不足或操作习惯不当,导致测量误差甚至误判电路特性。本文结合典型案例与实验...

关键字: 示波器 耦合方式

示波器作为电子测量领域的核心工具,其输入耦合电路设计直接决定了信号捕获的精度与适应性。从基础原理到复杂应用场景,输入耦合电路通过灵活配置直流(DC)、交流(AC)和接地(GND)三种模式,构建起连接被测信号与示波器前端放...

关键字: 示波器 输入耦合

太赫兹通信与6G研发加速推进,110GHz实时示波器已成为验证信号完整性的核心工具。其终端设计面临双重终极挑战:既要实现50Ω单端匹配的极致平坦性,又需攻克差分信号的共模抑制与阻抗一致性难题。这两项技术突破直接决定了示波...

关键字: 110GHz 示波器

是德科技(NYSE: KEYS )宣布,该公司帮助 AMD 加快了对预生产 AMD 服务器 CPU 的 PCI Express® (PCIe) 规范的电气合规性测试。通过提供先进的 PCIe CEM测试工具,是德科技帮助...

关键字: 服务器 CPU 示波器
关闭