当前位置:首页 > 测试测量 > 测试测量
[导读]很多教科书上都提示要慎用局部变量和全局变量,主要有以下几个原因: 违背了数据流的编程 读取局部变量需要拷贝数据 不能象SUBVI一样可以重用数据BUFFER 不利于程序调试 容易引起竞争 我在论坛上看到很多初学

很多教科书上都提示要慎用局部变量和全局变量,主要有以下几个原因:

违背了数据流的编程
读取局部变量需要拷贝数据
不能象SUBVI一样可以重用数据BUFFER
不利于程序调试
容易引起竞争
我在论坛上看到很多初学者的程序,里面充满了大量的局部变量,可以这样说,当你使用了过多的局部变量的时候,你的程序结构是有问题的,在早期的LV版本中根本不存在全局变量和局部变量,同样可以编制规模很大的程序,这说明局部变量和全局变量并不是必须的,LV提供了它们是因为在特定的情况下可以简化编程。

当我们使用SUBVI时,我们需要定义一个连接器,包括输入输出端子,调用VI的数据从输入端子进入,当SUBVI未执行完毕时,数据是不会流出到输出端子的,因此,SUBVI可以重用调用VI的数据缓冲区。而局部变量可以在子VI的任何位置被读写,局部变量在同一一个VI中,全局变量可以在任何VI中,所以通常情况下,无法重用数据缓冲区。

局部变量用于读写一个VI的前面板对象,对象是控制器或者指示器都可以,当我们读局部变量的时候,我们是在对象的当前状态,而对象在程序框图中的其它位置,其它的线程可能连续写这个对象,所以LABVIEW无法重用内存,不得不拷贝数据到新的缓冲区中,如果数据结构很大,就会占用相当多的内存。

很多情况下,局部变量都是可以避免的,看下面的例子。



上面图中的设计方式,在很多初学的程序中经常碰到,同样的数据要传到两个VI中,并且有次序要求,因此采用了顺序结构。问题是根本没有必要用局部变量,局部变量导致了数据的复制。





上面的两个图完成同样的功能,一个仍然采用顺序结构,不过CLUSTER挪到了FRAME外面,通过隧道,将数据传入到两个子VI中,避免了使用局部变量。但是顺序结构本身也是效率比较低的,也是NI不建议过度使用的.

针对这个具体问题,最下面的是最好地解决方案,利用错误簇作为数据流实现了顺序处理,避免使用局部变量。通过错误簇同时也有利于程序调试跟踪.另外一个明显的优点是程序框图更清晰明了,避免了在各个FRAME中进行切换.


全局变量使用内存的方式类似于局部变量,不同的是每次读全局变量肯定要生成一份内存拷贝,而局部变量是有可能重用缓冲区的.当全局变量是一个比较大的数组或者字符串时,多处多次读操作会造成大量的内存复制,极大地占用内存,导致运行速度下降。

从使用方法的角度看,全局变量很向一个SUBVI(8。X后SUBVI也有了使用权限的问题,如私有,公有),可以被任何其它VI调用,但是有一个根本的不同,当一个SUBVI正在被其他VI调用的时候,另外一个VI如果也在调用这个SUBVI,它必须等待这个SUBVI执行完成后,(设置可重入的除外),因此,尽管LABVIEW是并行的,多线程的,但是具体到这个SUBVI,却是有顺序的,需要控制权的,因此,LABVIEW很容易对SUBVI进行缓存重用。

所以,对全局变量,尤其是针对数组或者字符串,尽管它可以直接被调用,最好也要封装成一个SUBVI来使用,这样可以极大提高内存使用效率,同时避免了竞争的问题。

在循环中调用全局变量尤其要注意,每次多全局变量的时候,LV必须先复制这个数据,看下面的例子


上面的两个图中,黑色的需要反复调用内存管理器1000次,发生1000次内存复制,而下面的只需要一次内存复制。

如果COUNTER是一个庞大的数组,程序的运行效率会有惊人的不同。

如果用SUBVI封装全局变量,不如直接用FUNCTION GLOBAL,我在其他的文章中详细介绍过。

局部变量和全局变量另外一个问题是数据竞争的问题。认为任何时刻,该全局变量或者局部变量都可以被读写,这个问题在其它语言中也存在,所以要采用临界或者互斥的方法来避免。

封装成SUBVI,对调用者来说,就实现了互相排斥,任何时刻,只能有一个调用者使用这个SUBVI。

对于编程者来说,有很多方法可以避免全局变量。

使用FUNCTION GLOBAL(也叫LV2型全局变量)
使用队列或者通告
使用用户事件结构
使用控件参考

既然说了全局变量有各种各样的问题,但不是说全局变量是毫无用途的,我用全局变量最多的是用它来定义常量。

C语言中,可以用DEFINE来定义常量。
#define pi 3.14159

同理,我们可以把常量都放在同一个GLOBAL文件中。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在Linux系统性能优化中,内存管理与网络连接处理是两大核心领域。vm.swappiness与net.core.somaxconn作为关键内核参数,直接影响系统在高负载场景下的稳定性与响应速度。本文通过实战案例解析这两个...

关键字: Linux 内存管理

在C/C++多文件编程中,静态变量(static)与全局变量的作用域规则看似简单,实则暗藏诸多陷阱。开发者若未能准确理解其链接属性与生命周期,极易引发难以调试的内存错误、竞态条件以及维护灾难。本文将深入剖析这两类变量的作...

关键字: 静态变量 全局变量 C语言

C语言的内存管理是程序性能的关键因素之一。标准库提供的malloc、calloc、realloc和free函数虽能满足基础需求,但在高频分配、实时性要求高或内存碎片敏感的场景中,其开销和不可控性成为瓶颈。自定义内存池通过...

关键字: C语言 内存管理

下面的项目包括一个机器人完成各种任务。这是通过在机器人上使用和实现各种传感器来完成的。机器人能够在一个封闭的区域内移动,收集球,并在最后的一个点上放下球。机器人将绘制出它去过的位置和该区域内的障碍物。

关键字: 传感器 机器人 LabVIEW

在C语言编程中,内存管理是一项至关重要的技能。它直接关系到程序的性能和稳定性,特别是在处理大型数据集或需要灵活内存布局的场景下。其中,动态内存分配是C语言内存管理的一个重要组成部分,它允许程序在运行时根据需要请求和释放内...

关键字: C语言 内存管理

在实时操作系统(RTOS)环境中,内存管理是一项至关重要的任务。当多个任务同时运行时,内存分配问题可能会变得尤为复杂。本文将探讨一个常见的内存管理陷阱:在RTOS环境中,当任务A成功调用malloc(512)而任务B的m...

关键字: 内存管理 RTOS

在现代计算机系统中,内存管理是一项至关重要的任务,它直接关系到程序的执行效率、稳定性和安全性。为了满足程序运行期间多样化的内存需求,内存被巧妙地划分为堆(Heap)和栈(Stack)两大区域。这一划分不仅体现了计算机系统...

关键字: 内存管理 堆与栈

Linux系统中,内存管理是一个复杂而关键的部分,它直接关系到系统的稳定性和性能。Linux内存管理子系统通过一系列精妙的机制,实现了对物理内存和虚拟内存的有效管理和调度。本文将深入探讨Linux内存管理的整体架构,包括...

关键字: Linux 内存管理

在实时操作系统(RTOS)的设计中,任务间通信是一个至关重要的环节。它直接关系到系统的实时性、稳定性和可维护性。全局变量作为一种简单的数据共享方式,在RTOS任务间通信中确实可以被使用,但通常并不推荐作为主要的通信手段。...

关键字: RTOS任务 全局变量

NI提供的软件包经济省时,不仅帮助开发人员节省时间,还为创客提供了新的机遇

关键字: LabVIEW 自动化测试系统
关闭