当前位置:首页 > > 充电吧
[导读]N卡和A卡画质到底谁更好?A卡画质好N卡网速快的传言已经广为流传,但其实谁都说不出个之所以然。我们也曾经做过测试,发现A卡和N卡之间的画质差异,其实可以忽略。驱动设置一致的时候,A卡N卡画质真的没什么

N卡和A卡画质到底谁更好?A卡画质好N卡网速快的传言已经广为流传,但其实谁都说不出个之所以然。我们也曾经做过测试,发现A卡和N卡之间的画质差异,其实可以忽略。

驱动设置一致的时候,A卡N卡画质真的没什么区别

然而,无论是N卡A卡乃至是I卡,如果驱动设置不当,色彩的确是由优劣之分的!今天,就来给大家说说显卡驱动的一些关于色彩的关键设置,别让错误的设置瞎了你的眼!

色彩动态范围设置

这是个老用户必然会注意的问题,也是造成N卡色彩不如A卡这一认知的主要原因。在某一段时期内,NVIDIA为了兼容性,在驱动中默认把色彩动态范围设置为16-235,而A卡则是完整的0-255。两者表现区别有多大?看下面的图就知道了。

色彩设定为16-235动态范围,画面发灰

把色彩设置为0-255后,画面明显更通透

0-255的色彩范围相比,16-235明显发灰。A卡之所以颜色比N卡更通透更深邃,往往就是在这种情况下呈现的。解决方法也很简单,在驱动中把N卡的色彩动态范围也设置为0-255即可。现在N卡的新驱动默认也使用0-255的色彩动态范围,和A卡是没有区别的。

将N卡这个选项设置为“完全”即可

I卡可以在驱动面板的“视频”的选项中,找到“输入范围”,将其设置为“全”,获得最好的效果。

英特尔显卡驱动的设置

色彩像素格式、色域设置

这是一个普通用户容易忽略的设置项。如果你有留意,应该会注意到显卡会有不同的色彩像素格式输出,例如“RGB 4:4:4”或者“YUV/YCbCr 4:2:2”等等。这其实是由于使用了不同的色彩编码。

通常来说,电脑显示器使用的是RGB色彩编码系统的色域,例如sRGB、Adobe RGB等等,这类色域使用红绿蓝三原色对颜色进行编码;但为了兼容性,显卡驱动默认输出的色域很有可能是YUV编码的,也就是使用明度、色度、饱和度来定义颜色。

YUV可以通过公式计算转换成为RGB,但转换会涉及到精度问题。如果显卡驱动选择输出YUV信号到显示器,画质自然相比输出RGB有所下滑。

因此,将显卡驱动中的相应选项改为输出RGB 4:4:4,会获得更好的色彩。N卡和A卡都可以在驱动中进行设置,具体如下。

N卡输出颜色格式的设置

A卡输出颜色设置

而I卡默认会使用RGB输出,无法在驱动面板中设置。

色深设置

目前无论是N卡还是A卡,都可以在DirectX环境下输出10-bit色深。10-bit色深对比8-bit、6-bit的最大优点,在于灰阶更丰富。10-bit可以提供1024级色阶,而8-bit只有256级,6-bit更是只有64级。更多色阶可以让色彩过渡更加平滑,显示渐变时不至于出现条纹。

目前越来越多显示器支持10-bit色深,无论是原生支持的还是抖动而成的,效果都要比目前普及的8-bit色深更好。而即使你的显示器不支持10-bit色深,但播放10-bit视频时,仍能享用到10-bit的好处。视频往往基于YUV色域,而显示器使用的则是RGB色域,PC播放视频意味着颜色要经过YUV→RGB的色域转换,10-bit色深可以提供更高的转换精度,色彩显示会更加精确。

N卡和A卡都可以直接通过驱动开启10-bit色深,具体的位置如下。

N卡开启10-bit色深

A卡开启10-bit色深

而I卡并没有驱动面板中提供这个选项。如果I卡要使用10-bit色深,需要在Win10的设置选项中,打开HDR,这时候I卡才会输出10-bit。不过如此一来在显示非HDR内容的时候,颜色就非常奇怪了,不建议为了10-bit开启HDR。

I卡只能通过系统HDR开启10-bit

值得一提的是,N卡目前在OpenGL环境下也提供了10-bit色深输出,这意味这N卡能够在PS、PR、C4D等专业图形软件中,也支持10-bit,这是A卡所没有的优势。从这方面来说,N卡色彩要比A卡要好。

N卡在431.70驱动后,可以在专业软件中支持10-bit色深

最后,值得注意的是,如果你使用的是4K分辨率屏幕,那么仅能通过DP接口输出10-bit RGB 4:4:4 10-bit/60帧画面,HDMI目前并没有足够的带宽,因此大家尽量使用DP接口吧。

目前DP1.4、HDMI 2.0接口对色深、颜色格式、帧数的限制

总结

显卡驱动之所以不以最佳画质输出,很多时候是由于考虑到兼容问题,或者存在历史遗留问题。如果你想要更好的画质,不妨尝试一下这些设置吧。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭