当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 你可能听说过,在河南的农村里,在非洲的城市中,每一个你想象不到的地方,有着大量的数据标注员。 他们手动在图片里把每一只花瓶和每一辆汽车框出来,并且标上“花瓶”和“汽车”。一段时间后,这些

你可能听说过,在河南的农村里,在非洲的城市中,每一个你想象不到的地方,有着大量的数据标注员。

他们手动在图片里把每一只花瓶和每一辆汽车框出来,并且标上“花瓶”和“汽车”。一段时间后,这些人把成千上万张标记好的图片打包,发送给远在北京、上海甚至旧金山的 AI 公司。

GQ 将这些人称为《那些给人工智能打工的人》。

人工智能发展迅速,大大小小的互联网科技公司相继开展研究,投入商用。然而训练一个可用的 AI,需要大量准确标记好的图片、视频等资料。

正因为此,市场对数据标注的需求如此之大,吸引“那些给 AI 打工的人”争相加入,其中不乏原来找不到工作的闲散人员——毕竟这份工作只需要动动鼠标,用不上太多知识。

但是,恐怕不久后,这些人就将再次失业。

上周,来自约翰·霍普金斯大学、斯坦福大学和 Google 的专家联合发布了一篇论文,介绍了他们使用神经网络来自动搜索神经网络,将其投入图像分割方面的研究,并且取得的重要进展:

研究人员采用神经架构搜索 (Neural Architecture Seartch, NAS) 技术设计了一个神经架构 (A),放任它去自动搜索/设计出新的神经架构 (B),投入到图像语义分割 (semantic image segmentaTIon) 的任务中。

研究人员发现,这个被自动搜索出来的神经架构 B,在主流的小规模图像数据集上,未经训练就直接使用,表现已经超过了现有人类设计的、预先训练好的模型。

以往人们一直相信,设计 AI 需要大量知识和经验,简而言之就是需要人来设计。

但现在,AI 设计出的 AI,已经比人设计出的 AI 更强。

论文的标题叫做: Auto-DeepLab: Hierarchical Neural Architecture Search for SemanTIc Image SegmentaTIon

研究人员将这个能够自动搜索(设计)神经架构的技术命名为Auto-DeepLab。这个名字来自于 DeepLab,Google 人工开发的图像语义分割技术。前面加上 Auto,意思是在 DeepLab 的基础上,新的技术可以实现了很大程度的自动化。

论文署名作者当中,两人来自约翰·霍普金斯大学,其中第一作者是 Chenxi Liu,曾在 Google 实习;有四人来自 Google;剩下的一人来自斯坦福大学,正是原 Google Cloud 首席科学家,在计算机视觉学术和业界知名的李飞飞教授。

“本着 AutoML(编者注:Google 主导的 AI 计划,将算法选择,模型的超参数调整,迭代建模和模型评估等工作自动化。)和人工智能普及化的精神,对于不依赖专家经验知识,自动设计神经网络架构,人们的兴趣有了显著提升。”作者提到。

在“AI 自动设计 AI”这件事上,Auto-DeepLab 有几个比较重要的新尝试。

首先,神经架构搜索 NAS 技术是 AI 领域的新兴物种,主要用于简单的图片分类。而在这篇论文里,研究者首次尝试将 NAS 投入到高密度的图片预测任务上(也就是对更复杂的高分辨率图片进行语义分割,比如 Cityscapes 城市街景数据集、PASCAL VOC 2012 和ADE20K 等数据集)。

其次,在计算机视觉领域内的神经网络架构,通常分为内层、外层的两级架构,自动化的神经架构设计往往只能设计内层,外层仍需要人来设计和手调。而 Auto-DeepLab 是第一个让 AI 掌握外层设计和调参能力,并在图像语义分割任务上得到优异结果的尝试。

“图像语义分割”六个字听上去有点拗口,其实很好理解:对于一张图划分几个类别,然后将所有的像素点归类。

图像语义分割的任务,就是判断每一个像素点属于人、自行车,还是背景。

需要明确的是,图像语义分割的任务纯粹是判断像素点属于哪个类别,它不能识别和区分独立的物体。

不过图像语义分割仍然有很重要的意义,比如在它可以用于手机拍照的“人像模式”。采用更优秀的图像语义分割技术,手机能够在更高精度的照片里确认每一个像素点,属于人,亦或是背景。

目前 Google、小米等公司都在手机拍照上使用这一技术。理论上,未来的“人像模式”可以在毛发、衣物边缘实现更好的效果。

以及在自动驾驶的场景里,神经网络需要判断挡在前面的是车、行人还是建筑物,进而采用不同策略进行躲避,这同样需要图像语义分割来打基础。

从该论文体现的效果来看,Auto-DeepLab 还可以被转移到其他任务上。言外之意,让 AI 自动设计 AI 这件事,可能还会有很大的想象空间。

比如作者在论文最后提到,在目前的研究框架内,他们可以继续在物体识别的方向进行研究。

如果能够取得类似的结果,大规模使用,没准有一天,在数据标注(特别是图像标注)这件事上,人类标注员的成本等优势可能也会消失。

如果人工智能可以给人工智能打工,打工效率比人还高……

“那些给人工智能打工的人”,会失去工作吗?

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭