当前位置:首页 > 物联网 > 可穿戴设备
[导读] 在上一期基于DragonBoard 410c开发板实现人脸识别文章中,已经教大家如何利用Python实现人脸识别的第一个部分——人脸检测功能,今天在前面人脸检测的基础上,

在上一期基于DragonBoard 410c开发板实现人脸识别文章中,已经教大家如何利用Python实现人脸识别的第一个部分——人脸检测功能,今天在前面人脸检测的基础上,进一步教大家如何使用createFisherFaceRecognizer在dragonbaord 410c开发板上来进行人脸识别,今天将重点介绍该方法的原理和调用方法,处理中只是以识别前面人脸检测方法检测出来的人脸和数据库中存入的人脸进行匹配,最终识别人脸对象。

首先我们需要准备人脸数据,这里我对使用上一期文章中的获取人脸的方法进行了封装,写成了getFace.py文件,通过执行该文件在Dragonboard 410c上采集了三个人的人脸,每个人的人脸采集5次不同角度数据,分别保存到了usrImg文件夹下的001、002、003文件夹中,对应的命名为1.jpg,2.jpg,3.jpg,4.jpg,5.jpg,这些数据作为训练数据,然后基于这些数据调用FaceRecognizer提供的方法来实现对测试人脸的预测。

准备好数据后,就可以利用这些数据进行简单的人脸识别了,根据上述数据,使用Python编写程序,将数据导入到系统中,然后构建对应的训练数据集合和标签,其中相同的图片对应相同的标签数据,具体的对应方式如下:

           人脸图片                      标签

      ./usrImg/001/1.jpg               0

      ./usrImg/001/2.jpg               0

      ./usrImg/001/3.jpg               0

      ./usrImg/001/4.jpg               0

      ./usrImg/001/5.jpg               0

      ./usrImg/002/1.jpg               1

      ./usrImg/002/2.jpg               1

      ./usrImg/002/3.jpg               1

      ./usrImg/002/4.jpg               1

      ./usrImg/002/5.jpg               1

      ./usrImg/003/1.jpg               2

      ./usrImg/003/2.jpg               2

      ./usrImg/003/3.jpg               2

      ./usrImg/003/4.jpg               2

      ./usrImg/003/5.jpg               2

      在读取中,通过以下代码来读取到limg和lables两个列表中:

      dir = ['./usrImg/001/','./usrImg/002/','./usrImg/003/']
      name = ['1.jpg','2.jpg','3.jpg','4.jpg','5.jpg']
      lables = []
      limg = []
      n = 0
     for x in dir:
          for y in name:
              obj = cv2.imread(x+y,0)
              obj2=cv2.resize(obj,(400,500))
              limg.append(obj2)
              lables.append(n)
          n = n+1

然后就可以调用FaceRecognizer中提供的方法来进行人脸训练了,具体代码如下:

model = cv2.createFisherFaceRecognizer();

model.train(limg,np.array(lables))

完成训练后,读取测试人脸,这里可以用上一期人脸识别文章中的代码读取获取人脸,接着就可以进行人脸测试了,具体代码如下:

img1 = cv2.imread(‘test.jpg’,0)

test=cv2.resize(img1,(400,500))

result = model.predict(test)

print result

完成后,将代码进行保存,运行脚本,就可以得到人脸检测结果,将会输出被检测人脸匹配的标签和相似度,结果如下:

以上就是整个人脸识别实现的过程,后续blog中将进一步完善如何利用摄像头直接检测人脸和识别出对应的人,并且显示姓名。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭