当前位置:首页 > 芯闻号 > 充电吧
[导读]我们知道,大部分Spark计算都是在内存中完成的,所以Spark的瓶颈一般来自于集群(standalone, yarn, mesos, k8s)的资源紧张,CPU,网络带宽,内存。Spark的性能,想

我们知道,大部分Spark计算都是在内存中完成的,所以Spark的瓶颈一般来自于集群(standalone, yarn, mesos, k8s)的资源紧张,CPU,网络带宽,内存。Spark的性能,想要它快,就得充分利用好系统资源,尤其是内存和CPU。有时候我们也需要做一些优化调整来减少内存占用,例如将小文件进行合并的操作。

一、问题现象

我们有一个15万条总数据量133MB的表,使用SELECT * FROM bi.dwd_tbl_conf_info全表查询耗时3min,另外一个500万条总数据量6.3G的表ods_tbl_conf_detail,查询耗时23秒。两张表均为列式存储的表。

大表查询快,而小表反而查询慢了,为什么会产生如此奇怪的现象呢?

二、问题探询

数据量6.3G的表查询耗时23秒,反而数据量133MB的小表查询耗时3min,这非常奇怪。我们收集了对应的建表语句,发现两者没有太大的差异,大部分为String,两表的列数也相差不大。

CREATE TABLE IF NOT EXISTS `bi`.`dwd_tbl_conf_info` ( `corp_id` STRING COMMENT '', `dept_uuid` STRING COMMENT '', `user_id` STRING COMMENT '', `user_name` STRING COMMENT '', `uuid` STRING COMMENT '', `dtime` DATE COMMENT '', `slice_number` INT COMMENT '', `attendee_count` INT COMMENT '', `mr_id` STRING COMMENT '', `mr_pkg_id` STRING COMMENT '', `mr_parties` INT COMMENT '', `is_mr` TINYINT COMMENT 'R', `is_live_conf` TINYINT COMMENT '' ) CREATE TABLE IF NOT EXISTS `bi`.`ods_tbl_conf_detail` ( `id` string, `conf_uuid` string, `conf_id` string, `name` string, `number` string, `device_type` string, `j_time` bigint, `l_time` bigint, `media_type` string, `dept_name` string, `UPDATETIME` bigint, `CREATETIME` bigint, `user_id` string, `USERAGENT` string, `corp_id` string, `account` string )

因为两张表均为很简单的SELECT查询操作,无任何复杂的聚合join操作,也无UDF相关的操作,所以基本确认查询慢的应该发生的读表的时候,我们将怀疑的点放到了读表操作上。通过查询两个查询语句的DAG和任务分布,我们发现了不一样的地方。

查询快的表,查询时总共有68个任务,任务分配比如均匀,平均7~9s左右,而查询慢的表,查询时总共1160个任务,平均也是9s左右。如下图所示:

至此,我们基本发现了猫腻所在。大表6.3G但文件个数小,只有68个,所以很快跑完了。而小表虽然只有133MB,但文件个数特别多,导致产生的任务特别多,而由于单个任务本身比较快,大部分时间花费在任务调度上,导致任务耗时较长。

那如何才能解决小表查询慢的问题呢?

三、业务调优

那现在摆在我们面前就存在现在问题:

为什么小表会产生这么小文件 已经产生的这么小文件如何合并

带着这两个问题,我们和业务的开发人员聊了一个发现小表是业务开发人员从原始数据表中,按照不同的时间切片查询并做数据清洗后插入到小表中的,而由于时间切片切的比较小,导致这样的插入次数特别多,从而产生了大量的小文件。

那么我们需要解决的问题就是2个,如何才能把这些历史的小文件进行合并以及如何才能保证后续的业务流程中不再产生小文件,我们指导业务开发人员做了以下优化:

使用INSERT OVERWRITE bi.dwd_tbl_conf_info SELECT * FROM bi.dwd_tbl_conf_info合并下历史的数据。由于DLI做了数据一致性保护,OVERWRITE期间不影响原有数据的读取和查询,OVERWRITE之后就会使用新的合并后的数据。合并后全表查询由原来的3min缩短到9s内完成。 原有表修改为分区表,插入时不同时间放入到不同分区,查询时只查询需要的时间段内的分区数据,进一步减小读取数据量。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭