当前位置:首页 > 半导体 > 半导体
[导读]为了适应MEMS技术的发展,人们开发了许多新的MEMS封装技术和工艺,如阳极键合,硅熔融键合、共晶键合等,已基本建立起自己的封装体系。

为了适应MEMS技术的发展,人们开发了许多新的MEMS封装技术和工艺,如阳极键合,硅熔融键合、共晶键合等,已基本建立起自己的封装体系。

现在人们通常将MEMS封装分为四个层次:即裸片级封装(Die Level)、器件级封装(Device Level)、硅圆片级封装(Wafer Lever Packaging)、单芯片封装(Single Chip Packaging)和系统级封装(System on Packaging)。

但随着MEMS技术研究的深入和迅猛发展,以及MEMS器件本身所具有的多样性和复杂性,使得MEMS封装仍然面临着许多新的问题需要解决,如在硅圆片切割时,如何对微结构进行保护,防止硅粉尘破坏芯片;在微结构的释放过程中,如何防止运动部件与衬底发生粘连等;在器件封装中应力的释放,以及封装及接口的标准化等问题,此外还有封装性能的可靠性及可靠性评价问题等。

下面从MEMS封装的层次以及封装标准和封装的可靠性方面来阐述MEMS封装中所面临的一些问题。

1、裸片级封装(Die level)

裸片级封装通常是指钝化、隔离、键合和划片等工艺,其目的是为裸片的后续加工和使用提供保护。从硅圆片上分离裸片的常用方法是采用高速旋转的晶刚石刀片进行切割,在切割的同时,必须用高净化水对硅圆片表面进行冲洗。这种为集成电路开发的裸片切割方法对保护裸片上的关键电路不受硅粉尘的污染是非常有效的。硅片表面的水膜对集成芯片有很好的保护作用。

然而,由于MEMS比IC有更复杂的结构,如有腔体、运动部件以及更复杂的三维结构等,用这种裸片切割方法分离这些MEMS芯片,却因为水、硅粉尘的原因而很容易损坏或阻塞芯片的灵巧结构。为了防止MEMS芯片受损,必须在设计芯片阶段就开始考虑对芯片结构的保护。

裸芯片腔体封装是一种常用的方法。封装时有一个硅片基板裸片和一个硅“盖帽”裸片,先将MEMS芯片贴到基板裸片上,再将“盖帽”裸片键合到基板裸片上,从而形成一个密封腔体来保护MEMS器件。

钝化保护器件的方法也常用,这层保护层的厚度约为2-3μm。用有机保护层对芯片进行保护是很有效的,但存在的问题是有机物随着时间容易老化,典型的涂层是硅胶,硅胶 容易变干和变硬,这在许多应用中限制了它的有效寿命。

此外,将裸片与环境隔离的方法还有粘接工艺和键合工艺。粘接工艺主要使用环氧树脂、RTV、硅橡胶等粘接剂,环氧树脂用作粘接具有使用更简单,在固化时不要求升温,对冲击、振动能提供了很好的保护,具有价格优势等特点。

粘接方式的缺点是没有抗拉强度,易老化,而且不能做到密封,这在要求有可靠的机械强度和密封性能或者要求器件不受过强运动冲击的应用中是远远不能满足实际要求的。解决这一问题的方法是用键合工艺对裸片进行封装,键合工艺包括阳极键合、焊料焊接、硅熔融键合、玻璃粉键合及共晶键合等。

2、器件级封装(Device level)

器件级封装通常由MEMS器件、电源、信号调理和补偿、以及与系统的机械和电的接口等几部分组成。器件级封装旨在提高和确保器件的性能、减小尺寸和降低价格。与电子器件相比,MEMS接口更复杂、涉及的面更广。缺乏标准和标准化产品一直阻碍着MEMS的商业化。

器件封装连接的方法很多,包括环氧树脂或其它粘接方法、热熔方法(如电阻焊、回流焊)、芯片的互连包括引线键合、载带自动焊、倒装芯片技术等。尽管对特定的工作环境没有确切的定义,但要求在整个工作环境中,封装结构在机械强度、抵抗水压或空气压力的能力以及引线连接强度等方面必须是可靠的。

3、圆片级封装(Wafer Level)

在应用MEMS技术制造传感器过程中,人们一直努力想通过器件设计和制造工艺本身来减小MEMS封装所面临的挑战。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭