当前位置:首页 > 测试测量 > 激光知识经验
[导读]对于焊接和钎焊,常用的形状是圆形、方形、线形和环形强度形状,具有均匀的强度轮廓。具有多个强度区域的图案也经常被使用,包括具有高中心峰或领先点。为了实现这种成形,激光焊接行业采用了多种光束成形方法。其中包括衍射光学元件(DOE)、特殊排列的定制光纤束、成形光纤芯、每个激光器单独成形的多激光组合、振镜场镜、数字反射镜设备(DMD)和折射微光学。

激光焊接被广泛用于工业领域,包括汽车、航空航天、半导体、电子、医疗、电力、国防等。对于许多工业应用来说,尤其是在焊接、钎焊、锡焊和其他类似工艺领域中,原始激光束的形状并不是最理想的。与其他激光材料加工应用相比,这些工艺在所需的激光功率(数千瓦)和经常使用的高度多模光束方面很突出。而由特定工艺定制的激光强度分布可以提高吞吐量、接缝高度、强度和接缝边缘平滑度。

对于焊接和钎焊,常用的形状是圆形、方形、线形和环形强度形状,具有均匀的强度轮廓。具有多个强度区域的图案也经常被使用,包括具有高中心峰或领先点。为了实现这种成形,激光焊接行业采用了多种光束成形方法。其中包括衍射光学元件(DOE)、特殊排列的定制光纤束、成形光纤芯、每个激光器单独成形的多激光组合、振镜场镜、数字反射镜设备(DMD)和折射微光学。与其他方法相比,DOE有几个关键的优点:可以设计任何形状、制造灵活、是无源元件(不需要移动的机械零件或电子元件)和高损伤阈值。单个衍射光学元件与手动或自动平移/旋转工作台相结合,可以将有限的激光器转换为多种工艺的通用解决方案,而且不需要改变激光结构、增加复杂的电子设备或进行特殊的光纤操作。在这种成形方法中,光学元件的有效孔径被划分为离散的或连续变化的区域,每个区域都有自己的光学功能。入射到该元件的激光束被子孔径分割为子光束,每个子光束都受到其单独修正的影响,最终产生不同的效果。子孔径可以具有相等或不同的面积,并且具有不同的形状,例如角段、条纹或正方形。在有效孔径内移动激光束会改变入射到每个子孔径上的能量。此效果用于整体光学功能调整。具有子孔径的光学元件的一些基本结构如图所示。

对于下图所示的DOE,子孔径具有两种不同的功能,可以将光束整形为带有周围环的中心点。这种强度形状用于各种组件的切割和焊接,并且已知可以提供改进的工艺结果,根据具体应用调整中心点与环的比率。同样的柔性整形也可以通过将x-y平移支架和子孔径DOE光束整形器集成到激光头中来实现。在DOE的有效孔径内调整位置可以控制子孔径之间的比率,从而控制形状。

下图中的DOE是被广泛使用的三点光斑整形器原理,即使用三个耦合的光纤激光源实现了两个条纹光束和一个主光束。 在基于DOE的模拟方法中,有效孔径由三个子孔径组成。 具有棱镜功能的两个小孔径使两个条纹光束偏转,一个具有光束整形功能的大中心子孔径使主光斑偏转。在DOE的有效孔径内调整位置可以控制子孔径之间的比率,从而控制形状。

对于焊接应用,传热功能取决于许多参数,例如暴露时间,材料的电导率,环境条件等。形状均匀的光束对于焊接面积较大的区域(在这个区域最常进行光束整形)的焊接应用不是最佳的。 通常,中心区域过热,而拐角加热不足。这个问题可以通过产生与热图成反比的光照分布来解决,其中中心的强度最低,拐角的强度最高–这称为正方形M型光斑。 中心和拐角之间的强度比可以通过上面子孔径部分中所述的相同方法即时调整以适应特定的工艺需求。 实时控制和闭环反馈可以使此过程更加精确。功能可调的衍射光学元件DOE——调整M2整形除了将激光输出到一个特定空间强度分布的标准光束整形外,还有另一个非常有趣的想法是多模激光的合成光束整形(或M2变换)。通常,焊接应用中使用的高度多模激光器由于M2值高而无法紧密聚焦。 对于光纤耦合kW激光器,功率与非相干性之间存在内在联系——通常,功率越高,光纤数值孔径(NA)越大,M2越高。 因此,当以非常高的功率工作时,通过标准整形无法实现具有良好焦深的紧密聚焦。一种实现缩小聚焦和增加聚焦深度的方法是在正交轴上操纵激光光束质量,以使其中一个轴变得非常相干而第二个轴变得非常不相干。总体而言,空间连贯性仅略微增加。当前,M2转换有两种已知的形式——x-y坐标和R-θ坐标。我们在以下图中可以看到如何在M2变换之后使用当前使用的形状。左下角的小图形表示现有的形状,而大图像表示使用M2变换可能会改善的形状。在这种方法中,通常沿箭头方向扫描斑点。通过M2变换,可以在保持与当前形状相同的功率密度的同时,实现更窄的中心点和环绕点。这样可以钎焊具有更窄和更小接缝的特征。与中心点相比,环形光束具有相同的功率密度,并且环形厚度更窄。图中c显示:可以通过M2转换实现非常态分布,而这在高度多模激光器的正常成形中是不可能的。如果没有M2变换,对于较小的环直径,环将重叠,而对于转换后的光束,环可具有较小的分离角度。

通过成形器DOE上的子孔径移动光束,使用子孔径进行主动动态成形。这些方法无需场镜振镜即可进行扫描,无需进行主动形状切换,甚至可以连续改变激光分布。根据M形成形有利于焊接应用的具体情况,以及如何将此方法与子孔整形相结合,以提供可调整的边缘与中心点的强度比。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在日常生活和工业生产中,电压的稳定性对于各种电气设备的正常运行至关重要。然而,有时我们会遇到电压低的情况,这不仅会影响到设备的性能,还可能引发一系列问题。本文将对电压低的原因进行深入探究,并提出相应的应对措施。

关键字: 电压 电网

随着信息技术的飞速发展,芯片作为现代电子设备的核心部件,其制作工艺流程的精密与复杂程度日益提高。芯片的制作,不仅仅是一系列技术操作的集合,更是一场探索微观世界的工艺之旅。本文将带领读者走进芯片制作的世界,揭示其大致工艺流...

关键字: 芯片 半导体

在电子技术领域,指针万用表是一种不可或缺的测量工具。它以其精准度和直观性而受到广大电子爱好者和专业人员的青睐。本文旨在通过详细的步骤和技巧,引导读者正确使用指针万用表,以保障电路测试的准确性和操作者的安全。

关键字: 指针万用表 万用表

tda2030功放芯片将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: tda2030 功放 芯片

在这篇文章中,小编将对74LS148编码器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 74LS148 编码器

一直以来,ADC模数转换器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来模数转换器的相关介绍,详细内容请看下文。

关键字: ADC 模数转换器

以下内容中,小编将对lm393芯片的相关内容进行着重介绍和阐述,希望本文能帮您增进对lm393芯片的了解,和小编一起来看看吧。

关键字: lm393 芯片

一直以来,编码器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来编码器的相关介绍,详细内容请看下文。

关键字: 编码器 工业控制 机器人

以下内容中,小编将对力矩、角度、扭矩的相关内容进行着重介绍和阐述,希望本文能帮您增进对三者的了解,和小编一起来看看吧。

关键字: 力矩 角度 扭矩

今天,小编将在这篇文章中为大家带来可控硅的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 可控硅 单向可控硅 双向可控硅
关闭
关闭