当前位置:首页 > 公众号精选 > 21ic电子网
[导读]看到下面这个LED闪烁电路的彩色动图(GIF)就被它的简洁电路吸引,它的确与常见到的单管震荡电路有很大的区别。

看到下面这个LED闪烁电路的彩色动图(GIF)就被它的简洁电路吸引,它的确与常见到的单管震荡电路有很大的区别。

通常的单管震荡电路,无论是 RC移项震荡电路 ,还是LC组成三点震荡电路,或者通过变压器耦合震荡电路等方式,都需要三极管能够有一个基本的放大偏置工作状态,然后通过正反馈来形成正弦震荡,或者多谐震荡。

  • RC移项震荡电路:
    https://www.tutorialspoint.com/sinusoidal_oscillators/sinusoidal_phase_shift_oscillators.htm

然而下面这个基于 BC547-NPN 震荡演示电路则是太奇怪了!

▲ 动画振荡器演示

电路中的有源器件BC547并没有进行正常的偏置,它的基极是悬空的。而且NPN三极管也没有按照正常电压配置,集电极电位高于发射极,而是发射极的电位高于集电极,这个NPN三极管在被吊打!

看到这个电路,每个人都会问:这个电路真的能够震荡工作吗?!!!

▲ 振荡电路

如果手边有些相应的元器件,就可以方便在面包板上构建起实验电路。由于所使用的晶体管型号与BC547不同,在稳压电源9V的时候,并没有看到电路震荡。当电压提升到12V时,可以观察到电路中LED开始周期闪烁。

▲ 搭建在面包板上的实验电路

使用示波器观察电路中电解电容C1上的电压信号,LED串联限流电阻R2上的电压信号可以相应的振荡信号。

▲ 三极管集电极、发射极信号波形|黄线:发射极(e)信号|青色:集电极(c)信号

当电源电压(12V)通过R1(2.7kΩ)给C1(100uF)充电超过10V左右时,晶体三极管开始被击穿。电容电压便通过击穿后的三极管、R2、LED开始放电,从而引起C1电压开始迅速下降。

随着C1电压减小,放电电流减少一半的时候,三极管重新恢复截止。电路又开始新的一个循环。

▲ 三极管集电极发射极信号
黄线:发射极(e)信号
青色:集电极(c)信号

在这个振荡电路中,并没有应用三极管的放大功能,而是利用了它的C-E引脚之间,在被击穿之后出现的负阻现象,也就是随着流过的电流增加,C-E两端的电压反而减小的情况。

在下面表格中,显示了三极管2N2222A的C-E之间的电压与电流的关系。曲线的斜率是负值,显示出等效阻值为负数。

▲ 三极管2N2222A C-E之间的电压与流过电流之间的关系

对于一个负阻器件,可以通过外部并联一些储能器件(电容、电感)来形成震荡电路。下图则是一个简单的LC正弦震荡电路。

▲ 利用2N2222A的C-E之间的负阻建立的正弦振荡器

对于半导体中出现的负阻现象,最早是由 Leo Easki研究。他后来因为发现了隧道二极管中的量子隧道效应而获得了1973年的诺贝尔物理奖。

这种利用器件的负阻现象构成的脉冲振荡器,它的频率主要由外部储能器件参数决定。将前面电路中将C1的容值更换成0.1uF,对应的震荡波形如下,震荡的频率升高到1.773kHz。

▲ 振荡电路中的集电极和发射极的信号

电路的工作电压需要大于三极管C-E反向击穿电压电路才能够开始震荡。随着供电电压增加,当它超过一定电压之后,流过R1的电流就会使得三极管在击穿之后始终保持导通状态,电路也会停止震荡。

下面显示了工作电流从9V变化到19V,使用万用表测量R1信号的震荡频率。可以得到震荡频率与工作电压之间的关系曲线。

▲ 工作电压从9.5V到19V的变化过程

可以看出,只有在工作电压处于10.2V到18.5V之间时,电路才能够正常震荡。在这个范围内,震荡频率随着工作电压的增加而增加。

▲ 不同工作电压下输出信号的频率

为了获得更强的震荡信号,可以将多个半导体三极管串联起来,组成的震荡电路可以输出幅度更大的振荡信号。

▲ 使用串联的负阻抗器件提高震荡电路的输出功率


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

泰克科技这一全新的产品组合提供一整套独一无二的功能,能够满足从超低功率到超高功率的储能和电源电子设计需求。随着EA的加入,泰克科技能够为那些正在促进世界电气化的工程师们提供更全面的装备。

关键字: 电源设计

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

电在日常生活、生产、科学研究等工作中得到了广泛应用,随处可见各种各样的电路,这些电路的特性和作用各不相同。下面简单介绍下一些基础电路知识。

关键字: 电路图 电流 电压

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

负电压电源设计在电子设备中具有广泛的应用价值。本文将介绍负电压电源设计的基本原理和方法,并探讨其应用方案。

关键字: 负电压电源 电源设计

电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!

关键字: 直流 稳压电源 电路图

电子电度表是一种广泛应用于电力测量和计量的设备,其电源设计的合理性和可靠性直接影响到表计的精度和稳定性。本文将详细阐述电子电度表电源设计的原理、实现方法、影响因素和实际应用效果,以突出电源设计在电子电度表中的重要性和必要...

关键字: 电子电度表 电源设计

便携式仪表中的电源设计是确保设备正常运行的关键部分。本文将介绍如何实现便携式仪表中的电源设计,包括设计思路、电源模块设计、充电模块设计、保护模块设计和应用实例等方面。

关键字: 便携式仪表 电源设计

【2023年7月27日,德国慕尼黑讯】在静态开关应用中,电源设计侧重于最大程度地降低导通损耗、优化热性能、实现紧凑轻便的系统设计,同时以低成本实现高质量。为满足新一代解决方案的需求,英飞凌科技股份公司(FSE代码:IFX...

关键字: 静态开关 MOSFET 电源设计

TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

关键字: TFT-LCD 显示器 电源设计
关闭
关闭