当前位置:首页 > 公众号精选 > 亚德诺半导体
[导读]在RF和微波设计中,混频是信号链最关键的部分之一。今天我们就讲讲各种类型的混频器,以及各自的优缺点。

在RF和微波设计中,混频是信号链最关键的部分之一。今天我们就讲讲各种类型的混频器,以及各自的优缺点。 

顾名思义,混频器将两个输入信号混合,产生其频率之和或频率之差。利用混频器产生比输入信号高的输出频率时(两个频率相加),称为上变频;利用混频器产生比输入信号低的输出频率时,称为下变频。

单/双/三平衡无源混频器

最常见的混频器类型是无源混频器。此类混频器有不同的设计样式,如单端、单平衡、双平衡和三平衡等。使用最广泛的架构是双平衡混频器。这种混频器很受欢迎,因为其性能出色,实现和架构简单,性价比高,并能提供多种选项。

无源混频器通常以简易性而出名,不需要任何外部直流电源或特殊设置。此类混频器还有其他为人所称道的特性,包括宽带宽性能、良好的动态范围、低噪声系数(NF)以及端口间良好的隔离。此类混频器的设计及其无外部直流电源要求的优势,使得混频器输出端的噪声系数很低。一个较好的经验法则是,无源混频器的噪声系数等于其转换损耗。此类混频器非常适合有低噪声系数要求的应用,而有源混频器无法满足这一要求。此类混频器擅长的另一个领域是高频和宽带宽设计。从RF一直到毫米波频率,它们都能提供良好的性能。混频器的另一个重要特性是不同端口之间的隔离。此特性往往决定了具体应用可使用何种混频器。三平衡无源混频器的隔离性能通常最佳,但其架构复杂,而且其他特性(如线性度等)有些不足;双平衡无源混频器的端口间隔离性能良好,同时架构较简单。对大多数应用而言,双平衡混频器实现了隔离度、线性度和噪声系数的最佳组合。

就信号链整体而言,线性度(也常用三阶交调截点IIP3来衡量)是RF和微波设计的最重要特性之一。无源混频器通常以高线性度性能而出名。遗憾的是,为了实现最佳性能,无源混频器需要高LO输入功率。多数无源混频器使用二极管或FET晶体管,需要大约13 dBm到20 dBm的LO驱动,这对某些应用情形来说是相当高的。高LO驱动要求是无源混频器的最大弱点之一。无源混频器的另一个弱点是混频器输出端的转换损耗。此类混频器是无增益模块的无源元件,故而混频器输出端往往有很高的信号损耗。例如,若混频器的输入功率为0 dBm,且混频器有9 dB的转换损耗,则混频器输出将是–9 dBm。总的来说,此类混频器非常适合测试测量和军用市场

无源混频器的优势:

  • 宽带宽

  • 高动态范围

  • 低噪声系数

  • 高端口间隔离

图1. I/Q混频器框图和镜像抑制频域图


I/Q镜像抑制(IRM)混频器

I/Q混频器是一类无源混频器,它不但拥有常规无源混频器的优势,还具备其他优势,即不通过任何外部滤波便可消除不需要的镜像信号。此类混频器用作下变频器时也称为IRM(镜像抑制混频器),用作上变频器时则称为SSB(单边带混频器)。I/Q混频器由两个双平衡混频器构成,LO信号一分为二,然后经过相移而相差90°(一个混频器为0°,另一个混频器为90°)。通过此相移,混频器得以仅产生一个边带(需要的)信号,而抑制不需要的信号。

图2在同一频谱图上显示了I/Q混频器(紫色线)和双平衡混频器(蓝色线)的性能。可以看到,I/Q混频器通过提供45 dB抑制来抑制不需要的低边带,而双平衡混频器同时产生了高边带和低边带。


图2. HMC773A无源混频器和HMC8191 I/Q混频器的频谱图,IF输入为1 GHz, LO输入为16 GHz


像双平衡无源混频器一样,I/Q混频器也需要高LO输入功率。从架构看,I/Q混频器采用两个双平衡混频器,因此与两个双平衡混频器相比,所需的LO驱动往往要再多出大约3 dB。I/Q混频器对精密平衡的相位和幅度输入匹配很敏感。输入信号、混合结构、系统板或混频器本身的任何偏离90°的相移或幅度失衡,都会直接影响镜像抑制水平。通过外部校准混频器以改善性能,可以校正这些误差的影响。

由于边带抑制特性,I/Q混频器常用于需要消除边带但不通过外部滤波的应用,同时它能提供非常好的噪声系数和线性度。此类市场的常见例子是微波点对点回程通信、测试测量仪器仪表和军事用途。

I/Q混频器的优势:

  • 固有的镜像抑制

  • 无需昂贵的滤波

  • 良好的幅度和相位匹配


有源混频器

有源混频器主要有两类:单平衡和双平衡(也称为吉尔伯特单元)混频器。有源混频器的优势是LO端口和RF输出端内置增益模块。此类混频器会为输出信号提供一定的转换增益,并且输入LO功率要求较低。有源混频器的典型LO输入功率是0 dBm左右,远低于大多数无源混频器。

有源混频器常常还集成LO倍频器,用来将LO频率倍乘到更高的频率。此倍频器对客户非常有利,无需高LO频率便可驱动混频器。有源混频器通常具有很好的端口间隔离。然而,其缺点是噪声系数较高,而且多数情况下线性度较低。对输入直流电源的需求影响了有源混频器的噪声系数和线性度。有源混频器常用于通信和军用市场,低LO驱动和集成转换增益的需求对此类市场可能很重要。在测试测量市场,有源混频器主要用作IF子部分的第三级或最后一级混频器,或用于低端仪表(集成化和高性价比设计比噪声系数更重要)。

有源混频器的优势:

  • 高集成度、小尺寸

  • LO驱动要求低

  • 集成LO倍频器

  • 良好的隔离,但线性度和噪声系数不佳

集成频率转换混频器

由于客户需要更完整的信号链解决方案,所以集成频率转换器变得颇受欢迎。此类器件由不同功能模块构成,这些模块连接在一起形成一个子系统,使得客户的最终系统设计更简单。此类器件在同一封装或芯片中集成不同模块,例如混频器、PLL(锁相环)、VCO(压控振荡器)、倍频器、增益模块、检波器等等。可将此类器件制作成SIP(系统化封装),即把多个裸片组装到同一封装中,或一个裸片包括所有设计模块。

通过将多个器件集成到一个芯片或封装中,频率转换器可以给设计人员带来很大好处,比如:尺寸更小、器件更少、设计架构更简单,更重要的是,产品上市时间更快。


图3. 集成频率转换混频器HMC6147A的功能框图

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着科技的不断进步,数字信号处理技术在各个领域的应用越来越广泛。其中,DAC(Distance Amplitude Curve,距离-幅度曲线)曲线作为超声波检测中一种重要的分析工具,在无损检测领域发挥着重要作用。本文将...

关键字: 数字信号 DAC曲线

随着科技的飞速发展,数字信号与模拟信号之间的转换成为众多电子系统不可或缺的一部分。其中,DAC(Digital-to-Analog Converter,数字/模拟转换器)作为将数字信号转换为模拟信号的关键模块,在音频设备...

关键字: 数字信号 dac模块

在数字信号处理和通信系统中,编码器扮演着至关重要的角色。它负责将原始数据转换为字符序列或二进制码序列,以实现信息的有效传输和处理。而在编码器的众多组成部分中,BAT(电池)信号不仅提供了编码器运行的必要电源,还承载着多种...

关键字: 数字信号 编码器 BAT

DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

关键字: ds18b20 温度传感器 数字信号

需要将人类语音通过麦克风等设备转换成数字信号。这一步通常涉及信号处理技术,如滤波和分帧,以去除背景噪声和提高信号质量。

关键字: 语音识别 数字信号 信号处理

在汽车工业中,传感器与电子控制单元(ECU)之间的通信至关重要。为了优化这一通信过程,SAE(汽车工程师协会)推出了一种名为SENT(Single Edge Nibble Transmission)的新标准。SENT接口...

关键字: 传感器 电子控制单元 数字信号

​模数转换器,即Analog-to-Digital Converter,常称ADC,是指将连续变量的模拟信号转换为离散的数字信号的器件。大部分现实世界的电信号是模拟信号,ADC构建了模拟世界数字世界的联系。本文就模数转换...

关键字: 数模转换器 数字信号 模拟信号

伺服电机编码器是伺服系统的重要组成部分,它能够将伺服电机的位置、速度和方向等运动参数转换成可被处理的数字信号。编码器的工作原理基于光电转换原理或磁电转换原理,下面将分别介绍这两种工作原理。

关键字: 伺服电机 编码器 数字信号

数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。

关键字: DSP技术 通信 数字信号

混频器(Mixer)是一种非线性器件。它常用于无线通信系统中的频率转换和调制解调等应用。混频器将两个或多个输入信号进行非线性混合,产生新的输出信号,其频率为输入信号频率之和或差。这种非线性混合过程引入了频率转换和频率偏移...

关键字: 混频器 频率转换
关闭
关闭