当前位置:首页 > 公众号精选 > 泰克科技
[导读]点击上方“泰克科技”关注我们!文章摘要本文选自电工技术学报2021年1月版第36卷第2期《电压探头对宽禁带器件高频暂态电压精确测量的影响》一文,经原作者同意后,借此平台分享给大家学习参考。上期为大家介绍了典型示波器电压探头电路原理(点击链接即可回顾)。本期为第三期,继续为大家介绍...

点击上方“泰克科技” 关注我们!文章摘要

本文选自电工技术学报2021年1月版第36卷第2期《电压探头对宽禁带器件高频暂态电压精确测量的影响》一文,经原作者同意后,借此平台分享给大家学习参考。

上期为大家介绍了典型示波器电压探头电路原理(点击链接即可回顾)。本期为第三期,继续为大家介绍电压探头关键因素对高频暂态电压测量精度的影响分析

电压探头关键因素对高频暂态电压测量精度的影响分析

3.1

仿真电路

高频暂态电压由图6a所示的双脉冲测试电路产生,采用Saber软件进行电路仿真,仿真波形如图6b所示。所用开关器件为有开尔文源的MOSFET,在各目标信号中,VGs1为高共模电压低压差分信号,VDs1为高共模电压高压差分信号,VGs2为低共模电压低压差分信号,VDS2为高压对地信号。根据信号类型,VGs1VDs1VGs2需采用差分探头测量,VDS2既可采用高阻无源探头测量,也可采用差分探头测量。当开关器件无开尔文源时,S2驱动回路源端接地,VGs2也可采用高阻无源探头或具有宽输入范围的有源单端探头测量。

图6. 双脉冲测试电路及其仿真结果

3.2

带宽与上升时间

对于n个模块级联而成的线性时不变系统,记各级阶跃响应的上升时间为tr,m,当各级的阶跃响应皆为高斯函数(高斯响应)时,系统的上升时间可表示为

(4)

当各级阶跃响应有过冲现象且过冲幅度大约为阶跃幅度的5%或10%时,系统的上升时间将比式(4)给出的上升时间略短,系统的过冲幅度约为各级过冲幅度总和的二次方根。

考虑目标信号、电压探头和示波器级联形成的系统,各级阶跃响应的上升时间依次记为 tr,sign、tr,probe、 tr,scope。其中后两级组成的测量系统通过示波器的前端放大器相互隔离,使得这两者的上升时间相互独立,常用的电压探头和示波器一般具有高斯响应,由式(4)可得测量系统的上升时间为

(5)

进一步地,假设目标信号和电压探头的上升时间也相互独立,则整个系统的上升时间,即示波器显示波形的上升时间为

(6)

实际上,电压探头对目标信号有负载效应,目标信号的上升时间将因探头的加入而改变。负载效应模型如图7所示。图中,Vs为单位阶跃信号源,Rs为信号源电阻,Cs为负载电容,Vsign为目标信号,RiCi为电压探头的输入阻抗。未施加探头时,由RC电路的阶跃响应函数易得目标信号的上升时间tr,sign为2.2RsCs。同理,施加电压探头后,目标信号的上升时间变为2.2(Rs//Ri)(Cs Ci)。目标信号上升时间因电压探头的负载效应而变化的程度可表示为

(7)

图7. 电压探头对目标信号的负载效应模型

开关器件的栅源电压和漏源电压对应的等效负载电容Cs可分别用器件的输入电容和输出电容近似,tr,sign可由数据表直接读出,因此开关器件等效信号源电阻Rs可表示为tr,sign/(2.2Cs),取现有商售SiC器件进行估算,可得目标信号的等效负载电阻约在100Ω的数量级上,而常用的高阻无源探头和有源高压差分探头的输入电阻数量级约为MΩ,于是,式(7)可近似为

(8)

高阻电压探头的输入电容越大,其对开关器件的负载效应越明显。然而,由于开关器件的输入电容和输出电容是变量,不能用式(8)来准确计算。

考虑到电压探头的负载效应,式(8)可修正为

(9)

进而可定义测量系统产生的上升时间误差为

(10)

可知,为减小目标信号的上升时间测量误差,应使电压探头的输入电容足够小,并且使测量系统的上升时间远小于目标信号的上升时间。

带宽和上升时间成反比,对于高斯响应型的测量系统,两者间关系可近似表示为

(11)

暂态信号含有丰富的频率分量,理论上需要用全部的频率分量才能重构暂态信号,实际上频率过高的分量对暂态信号的重构影响甚微,为此定义拐点频率,在暂态信号重构过程,高于拐点频率的分量将被舍弃。对于目标信号,其拐点频率表示为

(12)

因此,从频域的角度看,为减小目标信号上升时间的测量误差,应当要求测量系统的带宽远大于目标信号的拐点频率。

图8比较了在不同的探头带宽下VDs2VGs2的仿真波形,为简化分析,不考虑示波器的作用,以探头输出电压Vp和衰减系数k的乘积作为目标信号的测量结果。不难看出,随着探头带宽的降低,目标信号测量结果的上升时间变长,测量误差也相应增大。此外,可以看出探头的测量结果滞后于目标信号,即出现传输延迟现象,这主要是探头的传输线导致的,本文对此不作深入讨论。

图8. 不同的探头带宽下VDs2VGs2的仿真波形比较

为定量说明电压探头对目标信号测量结果上升时间的作用,取VDs2在50MHz带宽探头作用前后的上升时间来分析。由图8a可知,该探头的负载效应使VDs2的上升时间由10.424ns变为10.875ns,又由式(11)可得该探头的上升时间约为7ns,将这些数据代入到式(9)可解得探头测量结果的上升时间为12.933ns,这与仿真得到的12.915ns一致。由式(10)可得,50MHz带宽探头对VDs2上升时间的测量误差达到23.9%,这表明低带宽探头无法满足高频暂态信号上升时间的测量要求。

电压探头带宽过低,意味着暂态信号的高频分量被极大衰减,当暂态信号波形具有高频振荡或尖刺时,低带宽电压探头将无法还原其快速变化的细节,图8a和图8b的仿真波形分别显示出低带宽探头对目标信号过冲幅度的抑制作用和对目标信号尖刺波形的平滑作用。

综上所述,本节的分析得到以下主要结论:

(1)电压探头对目标信号的负载效应和测量系统与目标信号的级联效应共同导致上升时间的测量误差,且误差随探头的输入电容或上升时间增大而增大。

(2)电压探头的带宽和上升时间成反比。

(3)电压探头带宽过低将使测得信号的过冲幅度下降、尖刺波形平滑。

3.3

寄生电感为了提高测量的灵活性,高阻无源探头的地线端通常设计为拖尾的鳄鱼夹,引入了地线线路电感和接地环路电感。出于同样的原因,有源高压差分探头的信号端通常留有一定长度的引线,于是也引入了寄生电感。此外,有些探测点受限于物理空间而难以直接测量,通常需要在探测点和探头间额外接入一段引线,这同样会引入寄生电感。

探头前端的寄生电感Lp与输入电容Ci相互影响,两者在高频时形成谐振,谐振频率为

(13)

对于某一确定的探头,其谐振频率将随寄生电感的增大而减小。考虑到振频率附近,电压探头增益剧增,因此当谐振频率靠近或低于探头带宽时,探头在带宽内的线性度将极大降低。

当目标信号有过冲或振铃现象时,探头前端的寄生电感会加剧目标信号测量结果的振荡。不同探头寄生电感下VDs2VGs2的仿真波形比较如图9所示。以VDs2的上升暂态波形为例进行分析,由图9a可知其振铃阶段的振荡频率约为100MHz。

图9. 不同探头寄生电感下VDs2VGs2的仿真波形比较

仿真所用无源探头的输入电容为 9.5pF,取地线电感Lg分别为50nH、100nH、150nH,则探头的谐振频率依次约为230MHz、160MHz、130MHz。可知,随着地线电感增大,谐振频率逐渐接近于目标信号振荡频率,这将导致探头对振荡频率附近分量的增益变大。如图9a 所示,随着地线电感增大,VDs2测量结果的过冲幅度渐次增大,这与分析一致。

即使目标信号无明显过冲现象,当电压探头的谐振频率接近或低于目标信号的拐点频率时,测量结果仍会出现过冲或振铃,图9b即为这种情况。

综上所述,本节的分析得到以下主要结论:

(1)电压探头的寄生电感与输入电容对目标信号高频分量产生谐振作用,谐振频率随寄生电感的增大而降低。

(2)当电压探头谐振频率逐渐降低且逼近于目标信号振荡频率时,测得波形的振荡幅度将增大。

(3)低谐振频率电压探头对无明显过冲现象的目标信号仍能产生振荡作用。

3.4

共模抑制比

对于差分探头,其输出电压可表示为

(14)

式中,VdmVcm分别为输入电压信号的差模分量和共模分量。由式(1)可得

(15)

如果取共模增益极性为正,则有

(16)

进而可定义差分探头输入信号的伪差模分量为

(17)

伪差模分量与差模分量的比值衡量了差分探头的“共模误差”,即

(18)

由于差分探头两差分信号路径的阻抗对称性随频率增大而变差,因此差分探头的共模抑制比一般随共模分量频率增大而降低。对于具有相同差模分量幅度和共模分量幅度的信号,差分探头的“共模误差”将随信号频率升高而显著增大。

差分探头在低于带宽时的差模增益基本不变,约为其衰减系数的倒数,即有kAdm≈1,因此差分探头的数据表中一般用201g(k|Acm|)表示共模抑制比,它与式(1)中定义的共模抑制比近似互为相反数。不同的探头共模抑制比下VGs1的仿真波形比较如图10所示。图10a为典型有源高压差分探头“共模抑制比”的频率响应曲线,为方便分析,仿真时取共模抑制比为常值,用这些共模抑制比不同的探头测量VGs1,得到图10b的仿真结果。仿真电路下管处于关断状态时,VGs1差模电压为-3V,共模电压约为600V。取共模抑制比为60dB的探头分析,由式(17)可算出该探头输入信号的伪差模分量为0.6V,进而由式(18)可得该探头测量结果的“共模误差”达到20%,这与仿真结果一致。此外,由仿真波形可知,随着共模抑制比的提高,探头的“共模误差”逐渐减小。

综上所述,本节的分析得到以下主要结论:

(1)“共模误差”由两个因素组成:

①差分探头的共模抑制比;

②目标信号的共模分量与差模分量之比,且“共模误差”随前者的增大或后者的减小而减小。

(2)差分探头的共模抑制比一般随共模分量频率增大而减小,这导致开关器件暂态信号的“共模误差”往往比稳态信号的“共模误差”更大。

图10. 不同的探头共模抑制比下VGS1的仿真波形比较

点击阅读原文,了解更多

欲知更多产品和应用详情,您还可以通过如下方式联系我们:

邮箱:china.mktg@tektronix.com

网址:www.tek.com.cn

电话:400-820-5835(周一至周五9:00-17:00)

将您的灵感变为现实

我们提供专业的测量洞见信息,旨在帮助您提高绩效以及将各种可能性转化为现实。
泰克设计和制造能够帮助您测试和测量各种解决方案,从而突破复杂性的层层壁垒,加快您的全局创新步伐。我们携手共进,一定能够帮助各级工程师更方便、更快速、更准确地创造和实现技术进步。

点击“阅读原文”了解更多探头种类!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

万用表是一种电力电子部门常用的测量仪表,它可以测量多种电学参数,如直流电流、直流电压、交流电流、交流电压、电阻、音频电平,以及电容、电感、半导体的一些参数等。根据显示方式的不同,万用表可以分为指针万用表和数字万用表两种。

关键字: 万用表 电压测量

数字万用表内部包含了转换电路、模/数(A/D)转换器、电子计数器、逻辑控制电路和译码显示电路等部分,这些部分协同工作以实现电压、电流和电阻的测量。

关键字: 万用表 电压测量

六位半数字万用电表(DMM)常用作实验室的调试工具,经常会有人问什么是六位半?具体来说就是测量值可显示的数值第一位数,只能显示正负和0,1,所以称之为½位,其它位数可显示0~9,我们称之为一位,例如,一个六位半数字万用表...

关键字: 数字万用电表 数字电压 电压测量

数字万用表在电器测量中是很常见的一种仪器,它主要是以数字电路为基础进行检测和分析信号,然后再通过转换器提供LED显示出来。

关键字: 数字 万用表 电压测量

点击上方蓝字关注我们!随着功能安全要求日益受到重视,改进系统诊断功能势在必行。其中,电流测量便是诊断评估的一项重要内容。要确定设计的测量精度,务必要了解误差源。了解如何解读数据表对于计算高侧电流测量的精度非常重要。此外,...

关键字: 电流测量 测量精度

点击上方蓝字关注我们!随着功能安全要求日益受到重视,改进系统诊断功能势在必行。其中,电流测量便是诊断评估的一项重要内容。要确定设计的测量精度,务必要了解误差源。了解如何解读数据表对于计算高侧电流测量的精度非常重要。此外,...

关键字: 电流测量 测量精度

点击“意法半导体PDSA",关注我们!中国,2021年3月24日——意法半导体ISOSD61和ISOSD61L是高精度隔离式二阶sigma-delta调制器,可提高电机控制、电动汽车充电站、太阳能逆变器、UPS电源以及服...

关键字: 测量精度 意法半导体 隔离

为了测量和控制多载波无线基础设施中的发射功率,需要进行均方根 (rms) 功率检波。

关键字: 射频 功率检波器 测量精度

在这篇文章中,小编将对气动测量仪加以介绍,并探讨如何通过压缩空气来保证气动测量此的测量精度。

关键字: 气动测量仪 测量精度 测量仪

近期,“小鹰”700全机拉力试验由航空工业试飞中心与通航国际公司协同完成,为“小鹰”700飞机换装不同螺旋桨试飞打下坚实基础。 全机拉力试验是发动机在装机状态下性能特性评定的重

关键字: 飞机 发动机 测量精度
关闭
关闭