当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘要:提出了一种基于ZigBee技术的大棚温湿度无线实时监控系统的设计方法。该方法以SOC芯片CC2530和内核为Cortex-M3的STM32F107及温湿度传感器为硬件平台,可实现对大棚内气体和土壤温湿度的实时采集及空间定位功能,同时可将采集到的数据通过ZigBee网络传输到监控中心。

引言

随着农业的发展,温室大棚的数量不断增多,规模不断增大,而对温湿度的控制是温室大棚的重要控制环节。温湿度的变化会影响到作物的生长,因此,需要将温湿度控制在适合作物生长的范围内。对于大棚内温湿度的采集,传统的有线传输布线比较麻烦,成本高,可拓展性差。因此,本文提出了一种基于ZigBee无线通信技术的低成本、低功耗、扩展性好、安全性和可靠性高的无线大棚温湿度采集系统。

1系统总体设计

为了实现对温室大棚的温湿度采集和空间定位,本系统采用基于Z-STACK协议栈组建的树形网。系统网络拓扑结构如图1所示。该无线网络由一个双核协调器、路由器以及终端设备组成。其中,协调器负责建立、维护和管理无线网络,并收集所有终端设备采集的数据,通过以太网与监护终端进行双向通信。路由器负责最佳路由路径的搜寻以及数据的转发,并作为定位系统中的参考节点。系统中的终端设备,作为定位系统中的盲节点,负责温湿度的采集。

2系统硬件设计

2.1双核协调器的设计

协调器是整个无线传感器网络的核心,是实现温湿度采集系统无线网络和有线网络融合的关键设备。图2所示为系统中的协调器硬件的整体框图。该协调器采用双MCU设计,其主控核心是采用Cortex-M3内核的STM32F107,负责协调器的数据存储、处理和远程传输。协处理器由CC2530和CC2591组成,负责协调器的无线收发功能。主控核心与协处理器之间通过串口通信,其接口电路如图3所示。双核协调器通过以太网连接到监控中心。STM32F107的以太网模块包括一个符合802.3协议的MAC(介质访问控制器)和专用DMA控制器。该模块支持默认的、独立于介质的接口(MMI)和精简的、独立于介质的接口(RMII)。本文通过AFIO_MAPR寄存器的选择位来选择RMII接口模式,电路选用集成并符合成本效益的快速以太网PHY控制芯片DM9161AEP。

2.2温湿度采集电路

ZigBee无线终端对于空气温湿度的采集设备采用的是SHT10数字温湿度传感器,对于土壤温湿度采集设备同样采并与一个14位的A/D转换器以及串行接口电路在同一芯片上实现无缝链接。SHT10采用I2C与CC2530处理器进行数据通信。同时,在测量和通讯结束后,SHT10会自动转入休眠模式。因此,该传感器具有精度高、响应速度快、抗干扰能力强、功耗低等优点。SHT10与CC2530的接口电路如图4所示。

3系统软件设计

系统软件设计主要包括上位机(监控中心)和下位机(ZigBee无线传感网络)设计两部分,本文重点讲述上位机对所采集温湿度数据的处理算法和下位机的软件设计方法。

3.1温湿度监控程序设计

终端节点要对大棚中的空气温湿度和土壤温湿度分别进行实时采集,然后经每个子网的中心节点将这些温湿度数据输出,并由协调器接收数据,再经以太网传送数据到监控中心。系统将在监控中心服务器中建立自己的数据库,负责将上传的数据存储到监控中心预警数据库中,然后通过上位机决策软件自主设定符合作物生长的温湿度范围,并对数据进行综合分析以产生相应的预警和决策。其处理流程如图5所示。

3.2下位机协调器软件设计

由于协调器要完成多任务处理、多任务调度、数据存储、TCP/IP通信协议以及无线通信协议等,需要实现的功能比较复杂,因此,本系统在协调器软件设计中加入了嵌入式实时操作系统uC/OS-II和嵌入式TCP/IP协议栈,以提高系统的运行效率和稳定性。uC/OS-II是一种可移植、可固化、可剪裁、占先式多任务实时内核,它具有占用空间小、执行效率高、实时性能优良和可扩展性强等特点。软件应用层、uC/OS-II操作系统、目标处理器硬件等各个模块之间关系如图6所示。

因为uC/OS-II操作系统不支持TCP/IP协议栈,所以,要实现以太网通信,需要移植LwIP(LightWeightIP)协议栈到STM32F107处理器上。移植版本为1.3.1的LwIP协议栈,主要是将LwIP源码文件中的api、core、include和netif文件移植到软件系统中,移植过程中需要修改的几个重要源码文件包括TcpTrans.c、TcpTrans.h、Netconfc、bsp.c、opt.h和Iwipopts.h。

协调器通过以太网与PC相连,负责接收由监控软件提供的各参考节点和移动节点的配置数据,并发送给相应的节点,同时,还将接收到的各节点所反馈的有效数据传送给监控软件[2]o其协调器软件处理流程如图7所示。

图7协调器软件处理流程图

3.3终端设备与路由器软件设计

因为温室大棚内的温湿度不会产生骤变,所以,为了降低终端设备的功耗,我们采用休眠-唤醒模式。终端节点完成初始化后将主动请求加入ZigBee网络,然后处于睡眠状态,每隔5min唤醒一次终端设备,以便采集温湿度参数和定位信息,并将采集的数据通过ZigBee网络发送给监控中心,同时使设备进入休眠状态,等待下一次采集事件的唤醒。其工作流程如图8所示。

图8终端节点软件处理流程图

路由器是一种已知坐标的静态参考节点,首先应配置其坐标位置,这样可以响应终端采集设备的RSSI和坐标请求报文,为终端设备提供RSSI和坐标参考值,同时,路由器还要负责数据包的转发。图9所示是其工作流程图。

图9路由器软件处理流程

3.4定位的实现

通过上位机决策软件判决时,如果某些终端节点采集的温湿度值不在预先设置的温湿度值范围,则应通过定位系统对该区域进行单独浇灌等处理,以有效地节约大棚的经营成本。本设计采用距离无关的定位算法,终端设备多次广播发送计算RSSI的请求报文,路由节点收到终端设备的请求报文后,立即向终端设备发送包含平均RSSI和自身坐标的报文,终端设备将平均RSSI值最好的那个路由器参考节点的坐标作为终端设备的定位位置。因为受到障碍物的影响,该定位算法难免会有误差,增加路由节点数量会有效增加定位精度,但不利于控制成本。

4结语

本文设计了一种基于ZigBee技术的大棚温湿度无线实时监控系统,同时介绍了该系统的软硬件设计方法,提出了由双MCU组成的高效双核协调器设计理念。实践证明,该系统对大棚内温湿度数据采集准确,系统运行稳定,且具有组网灵活、可拓展性好、能实时采集温湿度数据等优点,对于推动农业智能化发展,实现农业生产自动化等方面具有一定的现实意义。

20210918_61457997dce88__大棚温湿度无线实时监控系统的设计

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

加工工艺的优劣直接影响着产品的加工质量及生产成本,往往小小的优化可以对产品的生产效率带来极大的提升。鉴于此,针对斜口法兰的结构特点及技术要求,制定了合理的加工工艺。钻削是一种应用极其广泛的加工方式,但在斜面、锥面上钻孔会...

关键字: 钻削 夹具 定位

针对商业领域的假冒问题,利用RFID射频识别技术可扩充、灵活、安全等特点,结合一次一密认证机制,研究读写器与电子标签的初始化和电子标签的验证,研发设计出来的一种新型安全的防伪技术。

关键字: RFID技术 定位 防伪

GPS定位技术的出现与发展,为工程测量技术带来了革命性的变化,从根本上改变了工程测量的工作方式。

关键字: GPS系统 定位 工程测量

在当今科技发展迅猛的时代,无人驾驶车辆已经成为人们关注的热点话题。作为无人驾驶技术中关键的感知设备之一,激光雷达技术起着至关重要的作用。本文将详细探讨激光雷达技术在无人驾驶中的作用,并分析其优势和未来发展趋势。

关键字: 无人驾驶 激光雷达 定位

温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。市场上的温湿度传感器一般是测量温度量和相对湿度量。

关键字: 温湿度 传感器

温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。市场上的温湿度传感器一般是测量温度量和相对湿度量。

关键字: 温湿度 传感器

摘要:首先对现阶段电力施工工地人工管理模式存在的缺陷进行了阐述,分析了电力施工工地人、车、物智能化管理系统开发的必要性,然后在给出系统整体架构的基础上,从标签安装、设备安装及工作区域内无线局域网组成等几个方面出发,就系统...

关键字: 电力施工工地 RFID 定位

摘要:在变电检修作业中,无论是母排的制作还是接线掌的加工,都必须经过钻孔工序。以母排的加工工艺为例,其包含母线选型、母线设计及制作、钻孔、组装等工序,若孔眼制作有瑕疵,则会造成母排与其他元器件间的紧固螺栓受力不平衡,甚至...

关键字: 孔眼 定位 工具

摘要:目前大众出行所携带行李箱上下楼梯过于不便,普通行李箱不易提携,为此设计了一款爬楼行李箱。该爬楼行李箱通过5l单片机输出具有不同占空比的PwM脉冲信号到直流电机驱动装置,带动驱动轮及履带转动,从而实现爬楼的功能。同时...

关键字: 结构设计 调速 定位

摘要:结合分布式光纤传感技术和光时域反射技术,对油气运输管道泄漏监测与定位系统进行了研究。利用指数阈值函数进行小波分析去噪,实现管道泄漏的实时在线监测和定位。分析了系统的硬件结构设计和小波去噪流程,搭建了实验平台并进行了...

关键字: φ-OTDR 泄漏 定位
关闭
关闭