当前位置:首页 > 消费电子 > 消费电子
[导读]在本文的第一部分《数据采集和仪器:DAS和传感器》中,我们研究了数据采集系统(DAS)中涉及的电子技术和传感器。在第二部分中,我们将了解获取原始ADC数据后该如何处理。采集

在本文的第一部分《数据采集和仪器:DAS和传感器》中,我们研究了数据采集系统(DAS)中涉及的电子技术和传感器。在第二部分中,我们将了解获取原始ADC数据后该如何处理。

采集和处理策略

图1所示为通道数据处理块图。每个方块代表一个具有输入和输出量的函数(或“曲线”)。待测量的通道输入量X由传感器转换成传感器电量S,比如电阻或电压。传感器电路(比如电桥)对传感器做出响应并产生电压V。可编程增益放大器按增益G放大V,输入到A/D转换器,得到VxG。然后A/D转换器(ADC)将此电压转换为数字计数W。

 

 

图1:通道数据处理块图。

PGA和ADC一起带来偏移和增益(斜率)误差。如果PGA和ADC是线性的,则可以通过下一个方块U(W)(或LXFM)在软件中进行误差纠正。它使用通道校准参数将原始数据计数W转换为U=V,使U表示与V相同的值。换句话说,U(W)反转、“撤消”或线性“补偿”PGA和ADC组合造成的线性误差。通过数学公式可将其设置为:

 

 

用数学函数表示F(G),F是G的函数,即F是输出,取决于输入G。U(W)是线性变换,不能补偿非线性传感器或传感器电路,它只能反转线性函数。在传感器和电路都是非线性的情况下,U(W)仅能校正线性误差,U(W)设定为等于V。

对于非线性传感器或电路,第一个非线性补偿方块Z(U)可补偿传感器电路的非线性,并设置为V–1(S)=S(V)。最后一个方块用来补偿传感器的非线性,它基于制造商的传感器曲线Y(Z),对应于实际传感器的X(S)=S–1(X)。

总的来说,每个软件处理块执行模拟DAS块的反转,以便在给定W的情况下,通过撤消每个DAS块对X进行的操作来恢复X。

例如,考虑电桥电路中的单个RTD温度传感器。X是温度,单位为oC。RTD电阻随温度变化而改变,产生R(X)。桥电路电压随R(X)非线性变化,根据分压器公式产生输出电压V(R):

 

 

其中Rbr是分压器上电阻,R是传感器(下)电阻,Vbr是桥电压。DAS将该电压数字化并输出数字代码W(V)。然后U(W)以数字形式补偿DAS,使U=V。接下来,将U应用于第一非线性功能模块R(U)。它使用上面的分频器公式将计数U转换为RTD的电阻。(由于分频器公式的动态范围很大,经常使用浮点数学计算,因此返回的电阻值是浮点值。)下一个非线性块将电阻转换为温度,单位为oC,是函数T(R)。这是制造商给出的传感器曲线。Y(Z)可以反转传感器函数,从而使其线性化。这个例子的目标是通过下面的等式实现Y=X:

 

 

桥电压补偿

传感器电桥电路的灵敏度与电桥电压成正比。电桥输出电压V(Vbr,R)取决于传感器输出量(即电阻),S=R,以及桥电压Vbr。它可以表示为:

 

 

图3示出了该函数。

 

 

图2:传感器桥电路的灵敏度与电桥电压成正比。

“x”乘法器模块是一个附加模块,它是通过将U(W)分成两个模块来补偿的,如图3所示。

 

 

图3:“x”乘法器模块通过将U(W)分成两个模块来补偿。

U(W)补偿W(B),使得U=B(R)。此外,由电桥补偿软件执行的U(V)用校准值补偿电桥中的电压漂移。Vbr通过桥电压通道测量。最后的测量值及其校准值Vbr0用于形成补偿的比例因子。

线性校准

两点校准假设传感器和DAS增益是线性的。例如,如果应力传感器增益为1V/kN,它随所施加的应力大小而变化,因此是非线性的。为得到线性变换的偏移和斜率U(W),即DAS的线性部分,μC编程通过所获得的两个数据点构造了一条线,如图4所示。w轴是原始数据,即ADC的数字化计数。u轴是按给定单位处理过的数据。利用已知输入值u1和u2进行两次测量。ADC原始数据计数输出为w1和w2。

 

 

图4:μC编程通过所获得的两个数据点构造了一条线。

然后我们得到两个方程,可以求解斜率m和偏移量b:

 

 

由此得到两点校准的公式:

 

 

其中参数m和b用于将原始数据值转换为处理值,其单位是校准期间使用的单位。对于b,可以使用右侧表达式,也可以将两者平均。

对于一点校准,b=0(假设没有偏移误差),默认情况下第二个数据点是原点(0,0),只有斜率需要校准。

结语

DAS(或DAQ)已经成为电子行业的一个细分领域,它涉及模拟和数字波形处理。DAS采集和处理的常见策略是“撤消”处理功能或执行采集功能的反转,这些功能必须通过模拟电路实现,因为有些是非线性的。模拟采集的每个阶段都对应一个处理阶段,以便系统在ADC处可以自动反转,采集阶段由处理阶段镜像,处理阶段可以撤消它们所做的事情,直到检测到的数量本身就是整个过程的剩余部分。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该传感器能与测量表面实现出色的热耦合,结合了高耐湿性和快速响应的特点,并且适合恶劣工况应用,温度范围 为-40 °C 至+150 °C,防水时间长达 500 小时。此外,传感器采用氧化铝陶瓷表面,耐电压高达 2500 V...

关键字: 传感器 热耦合 功率模块

TDK 株式会社(东京证券交易所代码:6762)推出新的 B58101A0109A* (HP100) 系列热泵传感器。这是一种专为 满足汽车应用要求而设计的 NTC(负温度系数)传感器,可通过测量管道表面温度间接测量管道...

关键字: 传感器 电动汽车 热泵应用

TDK株式会社(东京证券交易所代码:6762)新近推出InvenSense SmartEdgeMLTM解决方案,这是一种先进的边缘机器学习解决方案,为用户提供了在可穿戴设备、可听戴设备、增强现实眼镜、物联网 (IoT)...

关键字: 机器学习 物联网 传感器

ILaS收发器INLT220Q集成 DC/DC 控制器,为汽车内饰和功能照明应用提供直接电池供电

关键字: LED照明 传感器 集成电路

4月22日消息,中国第一季度半导体产量激增40%,标志着成熟制程芯片在中国市场的主导地位日益巩固。

关键字: 半导体 传感器 人工智能 电动汽车

在科技日新月异的今天,传感器技术作为现代工业、汽车、航空航天等领域的关键组成部分,发挥着越来越重要的作用。其中,电子叻力角度传感器以其独特的结构和性能,成为众多应用场景下的理想选择。本文将深入剖析电子叻力角度传感器的结构...

关键字: 电子叻力角度传感器 传感器

随着农业科技的不断进步,氮磷钾传感器作为一种现代化的农业生产工具,正逐渐走进广大农户的视野。它能够实时测量土壤中的氮、磷、钾元素含量,为农民施肥提供科学依据,从而避免不必要的浪费,减少环境污染,提高施肥的精准度。然而,关...

关键字: 氮磷钾传感器 传感器

空气压力传感器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对空气压力传感器的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 传感器 压力传感器 空气压力传感器

本文中,小编将对焦距予以介绍,如果你想对它的详细情况有所认识,或者想要增进对焦距的了解程度,不妨请看以下内容哦。

关键字: 焦距 传感器
关闭
关闭