当前位置:首页 > 电源 > 电源
[导读]0 引 言近年来, 随着非线性控制策略研究的深入, 人们逐渐对采用模糊逻辑控制器( FLC) , 神经网络( NN) , 以及神经模糊控制器( NFC) 等策略来改善DC/ DC 变换器的动态特

0 引 言

近年来, 随着非线性控制策略研究的深入, 人们逐渐对采用模糊逻辑控制器( FLC) , 神经网络( NN) , 以及神经模糊控制器( NFC) 等策略来改善DC/ DC 变换器的动态特性产生了兴趣。模糊控制器的控制不依赖于被控模型的精确程度, 而是依赖于模糊控制规则的有效性。因此模糊控制器十分适用于对DC/ DC 变换器的控制。很多文献已经探讨过模糊控制在电力电子电路中的可行性和有效性。但是模糊逻辑控制器设计在选择最优隶属函数和模糊规则库方面还存在一定困难。

笔者针对降压、升压和降压- 升压变换器, 设计了DC/ DC 变换器自适应模糊逻辑控制器( AFLC ) 。

AFLC 优化了隶属度函数, FLC 的规则库从模式文件的训练数据中获得。

1 自适应模糊逻辑控制器设计

DC/ DC 变换器的FLC 结构如图1 所示。模糊逻辑控制器由模糊化、模糊推理和反模糊化三部分组成。

图1 中, Ui 是DC/ DC 变换器的输入电压, Uo 是DC/ DC 变换器第k 次采样时间的实际输出电压, Uref为参考输出电压。

 

 

图1 DC/ DC 变换器的FLC结构图

FLC 的输入分别为误差e 和误差e 的差分d e, 其定义如下:

 

 

FLC 的输出为占空比变化du( k ) 。

采用Mamdani 型FLC, 模糊规则的形式为Ri: IF e is A i and de is B i T HEN duk is Ci此处, A i 和Bi 是语言论域的模糊子集, Ci 是单元素*。每个语言论域被分为七个模糊子集: PB ( 正大) , PM( 正中) , PS( 正小) , ZE ( 零) , NS ( 负小) , NM( 负中) , NB( 负大) 。隶属度函数采用梯形表示, 输入输出变量的隶属度函数如图2 所示, 将误差量e, de 定义为模糊集的论域, e, de= [ - 3, - 2, - 1, 0, 1, 2, 3] ,以e, d e 为输入的FLC 的控制规则表如表1 所示。

 

 

图2 输入输出变量隶属度函数

表1 FLC 的控制规则表

 

 

2 模糊逻辑控制器的自适应算法

AFLC 是用自适应算法的FLC。这样, AFLC 自适应隶属函数并计算规则库中的部分规则结果。

AFLC 的输入是模式文件中的模型数据, 这些数据由一些期望输出的数据产生。

A FLC 通过自适应算法, 按照模式文件, 可以更新其隶属度函数缩小因子为S e , Sde , 和Su 参数。A FLC中每个参数的更新结果可推论如下: 假设给定的训练数据集有P 条, 则第p ( 1<= p<=P) 条的训练数据误差测量可定义如下:

 

 

式中, dk 是第p 个期望输出矢量的第k 个分量, y k 是实际输出矢量的第k 个分量。很明显, 当Ep 等于零或目标误差, 该网络能够正确再生出第p 条的训练数据对的期望输出矢量。因此, 此处任务就是使整体误差测量最小化, 整体误差测量定义如下:

 

 

3 AFLC 的微控制器实现

本文AFLC 采用ST52T420 微控制器实现。

ST52T420 是8 位微机控制器和可擦写存储器版本, 存储器为4 字节可编程EPROM, 它能有效地实现布尔和模糊算法。降压变换器的控制电路原理图如图3 所示。

 

 

图3 控制电路原理图

该微控制器允许使用语言模型来代替数学模型描述问题。图3 中, 微控器包括一个8 位采样模拟/ 数字( A/ D) 转换器, 该A / D 转换器有一个8 通道模拟多路复用器和2. 5 快速重构数字端口。它的3 个独立的PWM/ 定时器负责管理直接功率器件和高频PWM 控制。工作时钟频率为20 MHz 以驱动芯片时钟振荡器, 开关频率选为19. 6 kHz 。AIN1 模拟输入连接的参考电压为5 V。通过4. 7 kΩ微调电位器来调节参考电压。另一个ANI0 的模拟输入连接到DC/ DC 变换器的输出端, 调节DC/ DC 变换器的输出级。该控制器用于降压, 升压和降压- 升压变换器, 而不需做任何改变。DC/ DC 变换器主电路参数如表2 所示。[!--empirenews.page--]

表2 降压、升压和降压- 升压变换器参数

 

 

4 实验结果

降压变换器的输出电压启动响应和负载响应分别如图4( a)、( b) 所示, 启动响应约8 ms, 负载开始为4Ω, 负载阻降到2 后, 输出电压几乎为相同的值( 约5. 082 V) , 负载响应约需0. 1 ms。

升压变换器的输出电压启动响应和负载响应分别如图4( c)、( d) 所示, 启动响应约13 ms, 负载响应约0. 1 ms。

降压- 升压变换器的输出启动响应和负载响应分别如图4( e)、( f) 所示, 启动响应约13 ms, 负载响应立即形成。

降压、升压、降压- 升压变换器的实验结果表明用AFLC 可获得响应, 在不同的输入干扰和负荷变化情况下, 变换器稳定且具有好的可调性能。研究结果还表明该AFLC 具有通用性, 可以适用于任何DC/ DC变换器拓扑结构。因此, 同样的微控制器软件可用来控制任何开关模式变换器, 而不需做任何修改。

 

 

 

 

 

 

 

 

 

 

 

 

图4􀀁? DC/ D变变换器的输出电Ñ

¡¡5结½论Â

本文设计ÁDC/ DC变变换器输出电压调节的自适应模糊逻辑控制器£并并Ó8位位微控制器实现。在负荷改变的情况下£ AFLC能能够将降压、升压、降Ñ-升升压变换器的输出电压调节至期望值。降压、升压、降Ñ升升压变换器的控制使用相同µAFLC算算法£没没有做任何程序修改¡

降压、升压、降Ñ-升升压变换器的实验结果表明ÁAFLC的的有效性£在在没有重构任何专家规则的情况下得到了令人满意的结果。结果表明£ AFLC很很通用,可用于任ºDC/ DC变变换器拓扑结构¡

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

北京2023年9月21日 /美通社/ -- 近日,由开放数据中心委员会(ODCC)主办的2023“开放数据中心大会”在北京国际会议中心举行。今年是ODCC成立10周年,大会汇集了数据中心产业链上下游企业、科研机构、专家学...

关键字: 数据中心 TI PEN DC

(全球TMT2023年9月1日讯)8月30日,中国移动第四届科技周暨战略性新兴产业共创发展大会在北京举行。会上,中国移动携手爱立信等产业链十余家合作伙伴发布5G轻量化技术RedCap“1+5+5”创新示范之城。RedC...

关键字: 中国移动 爱立信 DC 终端

推动5G高质量发展再上新台阶 北京2023年9月1日 /美通社/ -- 8月30日,中国移动第四届科技周暨战略性新兴产业共创发展大会在北京举行。会上,中国移动深化落实工业和信息化部关于推进5G RedCap技术创新发展...

关键字: 中国移动 爱立信 DC 测试

(全球TMT2023年8月18日讯)近期,爱立信宣布推出全新的RedCap解决方案,并以此为契机,与芯片合作伙伴联发科技合作,在频分双工(FDD)和时分双工(TDD)频段上进行RedCap数据传输和5G语音通话测试,速...

关键字: 爱立信 联发科技 DC 测试

北京2023年8月18日 /美通社/ -- 近期,爱立信宣布推出全新的RedCap解决方案,并以此为契机,与芯片合作伙伴联发科技合作,在频分双工(FDD)和时分双工(TDD)频段上进行RedCap数据传输和5G语音通话测...

关键字: 爱立信 组网 联发科技 DC

PLC代表可编程逻辑控制器。其基本上应用于控制工业自动化系统。PLC可以说是是较先进和简单的控制系统形式之一,现在正在大规模取代硬接线逻辑继电器。

关键字: PLC 编程语言 逻辑控制器

长期以来,工业控制一直是西门子PLC的主要应用领域,随着技术发展,现在的西门子PLC产品已使用了16 位、32位等等高性能微处理器,通信技术的提升使西门子PLC的应用得到进一步发展。

关键字: plc编程 逻辑控制器 接触器

-数字合作组织(DCO)发布《弥合鸿沟报告》以强调国际合作对确保所有人享有数字荣景的重要性 瑞士达沃斯2023年1月19日 /美通社/ -- 数字合作组织(DCO)今天在达...

关键字: 数字经济 DC BSP PS

上海2023年1月13日 /美通社/ -- 岁月不居,时节如流。回望2022,Brother深耕中国市场,坚持科技创新,优秀的产品不仅获得了广大用户的支持,也赢得了许多媒体的...

关键字: DC MFC ADS 扫描仪

美国罗克维尔和中国苏州2023年1月5日 /美通社/ -- 信达生物制药集团(香港联交所股票代码:01801),一家致力于研发、生产和销售肿瘤、自免、代谢、眼科等重大疾病领域创新药物的生物制药公司,宣布IBI351(GF...

关键字: 控制 CD DC IO
关闭
关闭