当前位置:首页 > 电源 > 电源
[导读]在电网适当地点合理添加无功功率补偿设备对电网进行无功功率补偿是提高电能质量的方法之一。STATCOM作为一种新型无功功率补偿设备,已成为柔性交流输电系统(FACTS)的一个重

在电网适当地点合理添加无功功率补偿设备对电网进行无功功率补偿是提高电能质量的方法之一。STATCOM作为一种新型无功功率补偿设备,已成为柔性交流输电系统(FACTS)的一个重要组成部分,是未来无功功率补偿设备的发展方向。和其他无功补偿设备如SVC相比,具有响应速度快;不会引起谐振短路;无功功率可以在感性和容性之间连续调节;利用PWM调制技术实现精准的电压调控;可同时对谐波和无功进行补偿。

要实现STATCOM实时陕速准确的补偿特性,必须建立在对电网无功功率、有功功率、谐波等电量参数的实时快速准确测量基础上。基于瞬时无功功率理论的无功功率检测算法,进行的多是瞬时值运算,响应速度快,适用于变化快、冲击大的无功功率和电压闪变的补偿。但瞬时无功功率理论的应用要求同步采样电网某时刻的三相电压电流,针对此情况,文中设计了由AD7606-6模数转换芯片与TMS320F2812组成的数据采集模块。

1 STATCOM结构模型及工作原理

图1所示为以电压源逆变器为核心的STATCOM模型。由以下几部分组成:电压/电流互感器,用于电网三相电压电流、STATCOM交流侧三相电流和电容直流电压检测;直流侧电容,其作用是为设备提供电压支撑;电压源逆变器(VSC),由大功率电力电子开关器件(GTO或IGBT)组成,运用脉宽调制技术(PWM)控制电力电子开关的通断,将电容器上的直流电压逆变成具有一定幅值和频率的交流电压;驱动电路,用于驱动大功率电力电子开关器件;耦合变压器和电抗器,不但可起到将大功率变流装置与电力系统耦合在一起的作用,还可将逆变器输出的电压中的高次谐波滤除,使输出的电压波形接近正弦波。其余的无功计算模块、d-q变换模块、PI调节器模块、PWM输出模块均在主控芯片DSP上完成

式(1)为STATCOM的状态模型,L为连接电感,R,us为逆变器损耗等效电阻为系统电压,uc为逆变器输出电压。

STATCOM的工作过程是,首先通过检测三相电压和电流,运用瞬时无功功率理论计算电网的无功功率或无功电流,判断电网无功状态,得到所需补偿电流的无功分量,经坐标变换得到逆变器输出的电压参考值Vcα.ref和Vcβ.ref。在欠无功或者无功过剩时,系统调节PWM调制系数,输出的PWM信号通过驱动电路改变电压源逆变器电力电子开关的通断时间,达到改变逆变器输出电压幅值、相位、频率的目的,从而改变电网无功状态,使电网无功功率平衡。

所以,同步检测电网三相电压和电流、STATCOM交流侧三相电流和电容直流电压是系统的核心任务之一。文中将采用AD7606-6模数转换芯片来实现模拟量采集。

2 AD7606-6模数转换芯片

2.1 AD7606-6简介及特性

AD7606-6是ADI公司为简化下一代电力线监控系统设计,新推出16位6通道同步采样模数转换器(ADC),多通道集成方便实现电网的三相电流和电压测量。如图2所示,AD7606-6内置有模拟输入箝位保护、跟踪保持放大器、二阶抗混叠滤波器、16位逐次逼近型ADC、数字滤波器、2.5 V基准电压源、基准电压缓冲以及高速并行和串行接口。采用单电源5 V供电,可处理±5 V和±10 V真双极性输入信号,同时6个通道均能以200 ksample·s-1的吞吐速率采样。输入箝位保护电路可承受高达±16.5 V的电压。无论工作在何种采样频率,AD7606-6的模拟输入阻抗均为1 MΩ。其采用单电源工作方式,具有片内滤波和高输入阻抗,无需驱动运算放大器和外接双极性电源供电。抗混叠滤波器的3 dB截止频率为22 kHz;当采样速率为200 ksample·s-1时,其具有40 dB抗混叠抑制特性。封装采用64脚LQFP形式,具有体积小、重量轻、可工作于-40~+80℃内的恶劣环境、抗干扰性强的特点。

2.2 AD7606-6引脚功能说明

AD7606-6采用64引脚LQFP形式,具有丰富的功能引脚,方便与DSP和微处理器连接。

AD7606-6主要的引脚和功能为:

(1)V1~V6。6个模拟信号输入端,输入信号范围可以是±5 V或±10 V,具体由引脚RANGE决定。

(2)V1GND~V6GND。模拟输入接地引脚,与各自输入引脚对应。

(3)OS[2:0]。过采样模式引脚,用于选择过采样倍率。

(4)DB0-DB15。16位数据并行输出口。其中,DB7/DB8复用为串口输出引脚(DOUTA/DOUTB)。

(6)AGND。模拟地,需并联10μF和100μF的去耦电容;AVCC:模拟电压,范围可从4.5~5.5 V;DGND:数字电路部分参考地;DVCC:数字电压,通常为5 V,数字电压与模拟电压必须保持一致;VDD:电源正电压;VSS:电源负电压。

(7)

。片选输入信号引脚,若
一起选中,数据由并口一起输出;
:读选通信号引脚。

(8)CONVST A/CONVST B。转换开始输入A和B,用于启动模拟输入通道转换。要对6个转换通道进行同时采样,可将两引脚短接,并施加一个启动信号。

(9)BUSY。转换状态信号,该引脚从转换开始到结束保持高电平,转换结束BUSY变为低电平,数据被锁存,可供读取。

(10)RESET。芯片复位信号引脚。

(11)RANGE。模拟输入范围选择引脚,此引脚的极性决定了模拟输入通道的输入范围,当为高电平时,输入范围±10 V,低电平时,输入范围±5 V。

(12)REF SELECT。内外部基准电压选择输入。高电平时使用内部基准电压,低电平则使用外部基准电压。

(13)REFIN/REFOUT。基准电压输入/基准电压输出。

2.3 AD7606-6所有通道同步采样逻辑时序

AD7606-6可对所有模拟输入通道同时采样,时序逻辑如图3所示。要实现所有通道同步采样,只需将CONVEST A和CONVST B引脚短接,使用一个CONVST信号便可启动所有模拟输入通道。AD7606-6内置有片内振荡器用于转换,每个ADC转换时间为tCONV。当施加CONVST上升沿时,BUSY变成高电平,在转换介绍后变为低电平。BUSY下降沿时,主控芯片可以通过给

/
施加低电平,从并行总线DB[15:0]、DOUTA/DOUT B串行数据线读取转换结果,按顺序V1~V6,每施加一个低电平读取一个通道的转换数据。
3.1 电压电流互感器

传感器使用电压电流互感器,电压互感器型号为LCTV31CE,电流互感器为LCTA24D。LCTV31CE是一种电流型电压变换器,其输入电压最高可达1 000 V,额定电流2 mA,输出电压则取决于所用的运算放大器,最高输出电压为运放电源电压的1/2,系统电压互感器与运放连接电路如图4所示,Vout=I2R2。LCTA24D-50 A/62.5 mA电流互感器,其额定输入电流50 A,额定输出电路62.5 mA,额定采样电压取决于所用的预算放大器,最高输出电压为运放电源电压的1/2,电流互感器与运放连接电路如图5所示,Vout=I2R2。

3.2 信号调理

AD7606-6的内部结构和芯片特性可知,与传统的模数转换芯片不同,其内部的信号调理电路中,加入了低噪声高输入阻抗的信号调理电路,而等效阻抗完全独立于采样频率且为固定值1 MΩ。同时,模拟输入端集成了具有40 dB抗混叠滤波器,无需添加额外的外部驱动和滤波电路。因为互感器输出的电流往往较小,且互感器直接接A/D会产生较大的相移,为使输入信号电压与AD7606-6模拟输入电压匹配,互感器输出信号经运算放大器OPA2132放大至5-6 V,调理电路如图4和图5所示。

3.3AD7606-6与TMS320F2812接口设计

STATCOM系统采用TMS320F2812作为主控芯片控制两片AD7606-6。TMS320F2812是TI公司的一款基于Flash的工业级32位定点DSP,其内核是针对工业需求所设计,主频能达到150 MIPS,单周期32×32位MAC;拥有EVA、EVB事件管理器,具有强大是事件处理功能,如中断、定时、PWM输出等;再加上丰富的外设接口,如CAN、SCI等,使其成为当前工控领域主流的控制芯片。

双片AD7606-6与TMS320F2812接口电路如图6所示。两片A/D的并行数据输出口直接连接到DSP的数据线XD[15:0];DSP的GPIOA[15:13]与OS[2:0],控制过采样倍率;GPIOB8连接AD7606-6(1)的片选端

,GPIOB9连接AD7606-6(2)的片选端,用于控制数据读取先后;
和GPIOB10经或门连接到两片A/D的读使能信号
,每向A/D
发个低电平读取一个输入通道的转换数据;PWM7连接A/D的CONVST A&B,用于启动A/D采样并转换。两片A/D的BUSY信号经或门连接到DSP的外部中断接口
,当两片A/D数据转换完成,两个BUSY变为低电平时,给
中断信号,告诉DSP可以读取数据。

4 同步采样软件设计

采用软件部分主要实现主控芯片DSP对AD7606-6的控制,完成对电网电量参数的采集。为方便数据处理,在每个工频周期内采集128个数据点,用DSP自带的捕获单元完成电网周期的计算,假设电网周期为T,则每隔T/128时间给CONVST A&B一个触发脉冲,启动A/D采用并转换。触发脉冲由PWM7提供,每个转换周期结束,根据最新获得的周期值修改PWM输出的占空比,即可实现在不同的频率内都能采集到128个数据点。

当转换结束,BUSY信号变成低电平给DSP一个外部中断信号,DSP进入外部中断子程序,外部中断子程序实现对转换数据的读取。读取第一片A/D的数据,首先GPIOB8给AD7606-6(1)的片选端

一个低电平,低电平持续到数据读取完成。然后通过GPIOB10和
6个脉冲,从并行口依次读取6路输入通道转换值,程序中注意读取完数据后要修改数据寄存器的地址。第二片同理,只需修改片选信号即可。程序流程如图7所示。

5 实验

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

一切电子设备都要用电,电源也就无处不在。电源在我们印象中就是输入端进电,输出端对用电设备供电,它的电路是由一堆的电阻、电容、电感还有变压器、风扇之类构成。

关键字: 处理器 电源管理 模块设计

Spectrum仪器全新旗舰型号集10GS/s、12位分辨率、4.7GHz带宽与12.8GB/s数据流传输于一体

关键字: 数字化仪卡 信号采集

运算放大器在信号的采集、放大等各种应用中非常广泛,其应用电路也非常多,因此我们特地针对运算放大器的各种电路的实现、参数和一些关键的特性做了总结,以供各位小伙伴查阅。

关键字: 运算放大器 信号采集 同相放大器

拥有10 GSample/s速率、12位分辨率+ 和12.8 GByte/s流式传输速度的新产品

关键字: PCIe数字化仪卡 信号采集

摘要:结合无线充电产品设计经验,对无线充电设计细节进行探究。介绍了无线充电划分及电磁感应无线充电结构、测试指标,在此基础上对电磁感应无线充电设计进行了分析,并总结了电磁感应无线充电产品常见问题及改善措施,阐述了电磁感应无...

关键字: 模块设计 线圈 散热

摘要:基于Zynq-7000系列芯片,利用其ARM+FPGA的组合架构,搭建了千兆以太网模块。介绍了该模块的硬件平台设计,并在硬件基础上设计了FPGA和ARM程序。经测试,模块成功实现了数据上下行传输功能,传输速度达到6...

关键字: ARM+FPGA 千兆以太网 模块设计

摘要:介绍了混联机构高速高精度贴片机的设计内容,主要包括机械结构设计及控制系统设计,并研制了样机,通过调试,初步达到设计预期,对混联机构应用于工业生产具有一定的指导意义。

关键字: 混联机构 模块设计 控制系统

摘要:介绍了混联机构高速高精度贴片机的设计内容,主要包括机械结构设计及控制系统设计,并研制了样机,通过调试,初步达到设计预期,对混联机构应用于工业生产具有一定的指导意义。

关键字: 混联机构 模块设计 控制系统

在这篇文章中,小编将为大家带来智能断路器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 智能断路器 断路器 信号采集

×为可编程逻辑控制器(PLC)或分布式控制系统(DCS)模块等过程控制应用设计模拟输入模块时,主要权衡因素通常是性价比。传统上,此应用领域使用双极性±15V电源轨来提供有源前端组件,用于输入信号的衰减或增益。这会影响物料...

关键字: 模块设计 系统级 模拟输入 ADC
关闭