当前位置:首页 > 电源 > 数字电源
[导读]简单的LED电源项目电路 A power source for simple LED projectsLED's are great display tools. Their prices have decreased to a point where they are replacing more conventional light sources. In one sense

简单的LED电源项目电路 A power source for simple LED projects

LED's are great display tools. Their prices have decreased to a point where they are replacing more conventional light sources. In one sense their characteristic need for low voltages is an advantage e.g compatibility with I.C drives, but this voltage requirement can also be a disadvantage. I wanted to light some LED's in a simple sign application, nothing fancy, but I needed to decrease the utility line voltage to a LED-compatible value for this application.

The line voltage can be reduced in various ways, via dropping resistor, a transformer, a "brick" power supply, a capacitor etc. A dropping resistor wastes considerable power and generates heat. A "brick" power supply must be adapted to the particular design needs, i.e a specific voltage and current and also may have an expense associated with it that is undesirable for a simple circuit. A transformer can be bulky, weigh a lot and may be expensive.

A capacitor can act as a voltage dropping component and in this instance, was chosen to light the static LED display shown below. The considerable drop in voltage from the line (117 v.a.c) down to approximately 2-1/2 volts a.c results in an almost negligible power loss in the capacitor(s). It is simple, low cost and small.

The 10 LED's were lit using the following circuit...

figure 2
 

The capacitor value may be computed via the following empirical formula. This formula is valid for the circuit shown in Fig.2:

(1)

Where "C" is in uFd and "I" is in miliamperes. A design current of 10 mA per LED was selected. Thus for ten LED's, 100mA is the total current. Inserting this current value into the formula, yields a capacitor value of 3.1uFd.

To achieve this value, two capacitors connected in parallel were used. Recall that the total capacitance of capacitors connected in parallel is simply the arithmetic sum of the individual capacitors:

Thus:

 

figure 3


If it becomes necessary to use capacitors connected in series to achieve a desired total capacitance, the formula for this computation is:


 

For two capacitors in series, it may be easier to calculate the total series capacitance via:

To achieve a desired total capacitance, it may be necessary to use a series-parallel connection of three capacitors. Empirical formula (1) was derived by measuring currents and voltages for various quantities of LED's (up to 30) connected into the circuit shown in Fig 2. The capacitors must be low loss, non-polarized units with voltage ratings equal to or greater than 200 volts.

 

Transformer voltage dropping circuit


If instead of using capacitors, it is desired to power LED's with a transformer, the low voltage, rectified sine wave ideally should be applied to each LED via a dropping resistor. This enables the forward current to be adjusted to a value that does not overdrive the LED. In lieu of using dropping resistors, if the rectified voltage is carefully selected via a judicious choice of transformer, the output of a rectifier may be applied directly to one or more LED's  connected in parallel.

 

  figure 4

The Tamura transformer has a 4 volts c.t secondary. This value just supplies sufficient voltage to generate 14mA for one LED. For 10 LED's or greater, omit D3.

 

Circuit comparison


Comparing the two approaches, the capacitor voltage dropping circuit is smaller, lighter in weight and varying the capacitor value enables the user to obtain a desired current value for each LED. The transformer approach, yields a circuit where the transformer provides isolation between the LED's and the line voltage. Both circuits are nominally low in parts cost.

 

Parts


The components used in gathering data where purchased from Mouser Electronics:

- 2.2 uFd = PHE840MZ7220MF14R ($2.52)
- 1.0 uFd = PHE840MY7100MD16R ($0.93) (275 Volts)
- Tamura transformer #SB2812-1204 ($3.53)
- 1N4004 diodes ($0.08 each)

The bridge rectifier and LED's were purchased from All Electronics:

- LED-1 (T1-3/4 Red LED) ($0.10 each)
- FWB-15, 1-1/2 amp, 400 PIV Bridge Rectifier ($0.50 each)
- Perf Board


Acknowledgments: My thanks to Mr. Oscar Ramsey for his testing, data gathering and construction efforts.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

RSC6218芯片用于LED电源方案,优势明显! 高于市场的转换效率(>90%); 助力产品小型化(缩小PCB面积10%-25%); 高PF>0.96 低THD(

关键字: LED电源 LED驱动模块 LED照明

在现代电气和电子工程领域,分流器作为一种重要的电气元件,广泛应用于各种电路中。它不仅能够有效地将电流分配到不同的支路,还能实现电路的保护和测量功能。本文将详细介绍分流器的使用方法、应用场景以及实用技巧,帮助读者更好地理解...

关键字: 分流器 电气元件 电路

将测量电流的电极接入电路,注意不要混淆正负极,否则会发生短路,万用表的正负极正确接入电路,然后读取电流值。

关键字: 万用表 电路 正负极

在科技飞速发展的今天,比较器作为一种关键的电路或装置,其在数字系统、模拟电路以及信号处理等领域发挥着至关重要的作用。比较器的主要功能是对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序。本...

关键字: 比较器 电路

为增进大家对混合集成电路的认识,本文将对混合集成电路的相关内容予以介绍。

关键字: 电路 指数 集成电路

为增进大家对集成电路的认识,本文将对集成电路的种类、应用以及芯片的种类、应用予以介绍。

关键字: 电路 指数 集成电路

为增进大家对集成电路的认识,本文将对集成电路、集成电路和芯片的主要差异予以介绍。

关键字: 电路 指数 集成电路

在电子技术领域,单脉冲电源是一种能够产生单一脉冲波形的电源设备。它在众多领域中具有广泛的应用,特别是在需要精确控制时间或幅度的电路中。那么,单脉冲电源究竟输出什么电呢?本文将深入探讨单脉冲电源的工作原理、输出特性及其在各...

关键字: 单脉冲电源 电源设备 电路

本文中,小编将对电容予以介绍,如果你想对它的详细情况有所认识,或者想要增进对电容的了解程度,不妨请看以下内容哦。

关键字: 电容 电容器 电路

反向电压,即在电路中施加与正常工作方向相反的电压,是一个重要的电气概念。本文将从反向电压的定义、产生原因、影响以及应用等方面,对其进行全面深入的探讨,旨在帮助读者更好地理解反向电压的相关知识。

关键字: 反向电压 电子设备 电路
关闭
关闭