当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]众多数字工程师难以处理EMC问题。与模拟世界的一些观点相反,这并不是因为他们没有说话能力,也不是因为他们在学校里没有刻苦学习,实际上与工程师个人没有任何关系。而现在

众多数字工程师难以处理EMC问题。与模拟世界的一些观点相反,这并不是因为他们没有说话能力,也不是因为他们在学校里没有刻苦学习,实际上与工程师个人没有任何关系。而现在许多有关EMC的难题的根本潜在原因是态度问题,即:数字工程师不相信EMC。这种令人遗憾的情况是由多种因素造成的,我们的教育机构、仪器(集成电路、仿真工具等)的制造商以及工程管理方面的低劣性能都有无法推卸的责任。

我们的机构、厂商和管理者无意地宣传了五种误解,致使许多数字工程师新手无法正确理解EMC,甚至不相信它的存在,对于刚从学校出来的数字工程师新手来说,最多只是一个神话。

你对五种误解了解得越多,就越能理解许多数字工程师的观点,从而帮助你解决不可避免的EMC难题。

Ⅰ数字工程师不相信电流是循环流动的

从数字简图上可以看出,逻辑网上的数字信号是在门之间传递的,这些信号是以电子流的形式实现传递的,而电子流也总是循环流动的,但是在简图中并没有示意返回信号流的路径。

许多数字工程师都相信返回的路径是不相干的。如果逻辑驱动器充当电压源,而输入充当电压接收器,他们则推论出担心电流的原因。示波器和逻辑分析器厂商主要推销电压状态的探针,增加了对EMC的误解。若电流感应良好的探针具有接近活性的极微小的探尖,则可以在单个的BGA球上看见电流的流动,这变成了 “现实”,而不仅仅是单纯的理论概念。

比如说,你准备与某个数字工程师共同研究普通状态的电缆辐射问题,首先你需要确信这个工程师是否真正理解电流是循环流动的这一事实。

Ⅱ数字工程师不相信H场

我将这类误解归因于教育系统,他们将重点放在电子域效应上,而不是磁性上。这是电子管时代的产物,其主要特征是电路阻抗非常高。例如,电子管的板极电路可能有100,000 欧姆的阻抗,大大高于自由空间的阻抗(377欧姆),因此板极电路周围的大多数近场能量将处于电子场状态,多数的交叉耦合与寄生耦合问题都将产生电子场或电容性效应。

现在的高速数字系统电路是低阻抗的,接近50欧姆,大大低于377欧姆的自由空间阻抗,而数字电路周围的大多数近场能量则处于磁场状态,并非电子场状态,因此高速数字系统中的交叉干扰、接地逆跳和干扰问题涉及电流、磁场和电感的循环。

在EMC世界中,数字电路板周围的近场能量大多数是磁性的,这是普通的常识,但数字工程师却不了解。

Ⅲ数字工程师不相信门是差动放大器

典型的产品数据单中是采用绝对伏特单位对输入电压的灵敏度进行评定的,但是就门仅仅对应于输入引脚电压和指定的参考引脚电压之间的区别而言,没有作出明确的说明,另外,也不明确哪一个是指定的参考引脚。(对于TTL来说,指阴极电源干线;对ECL来说,指阳极线。)

这种概念的不明确使许多工程师认为门可以感知“绝对零”伏特,就好象具有魔力的电线从芯片中引出,连接到地球的中心,从而找出“真正的”接地参考电压。因而,他们无法理解系统中的两点接地电压不相等时所产生的问题。

当然,没有一个厂商会承认他们生产的芯片容易受到接地移动的影响,因此他们无法谈论更多有关这方面的情况也是意料之中的事。此外,这类系统结构允许芯片之间进行接地移动,这很有可能出现故障,而且可能生成大量的EMI,并面临ESD和其它的免除性问题,这才是严重的问题。

大多数的数字工程师都没有花时间去考虑系统中不同的接地电压的存在,以及对性能产生的效应,或者实现接地移动的机制。

Ⅳ数字工程师不相信电磁波

尽管在工作中会遇到大量的有关电磁场的实例(如微波爆米花和电视),但许多的数字工程师仍不相信数字系统中产生过这种效应,其根源在于波动不存在于 Spice设备中。一代电路设计者相信基于Spice的软件仿真世界是真实条件下运作的真实电路的表现,但他们不理解这是有限制性的。刚从学校毕业的数字设计者认为,Spice不能做E&M场,因此肯定是不存在的。

仿真自然有它的作用,总的来说,如果你知道要模拟什么,那么它就能产生奇迹。但是你若致力于比如EMC的研究,则会过分吹嘘仿真的优势,而问题在于我们不一定知道影响最大的是什么效应,仿真也无能为力。Samuel Clemens曾说过:“我们永远无法预测灾难的降临。”

Ⅴ数字工程师不相信理解EMC有助于我们自身的事业发展

这属于管理方面的问题,发生的原因不难看出。

假设Joe是一位出色的产品设计师和数字界的精英,他刚刚完成有关EMC的论述,并使其最新的产品在初审时就通过了FCC和EC规定,他是一个天才!

接下来发生的事如预言所说,Joe的设计生涯结束了,他不会再在公司设计其它的处理器,取而代之,他开始解决Fred的EMC问题,接着是Bob的问题,然后是其它的种种问题。他高效率地排除了这些问题,重复使用他的EMC经验,而其他人则因淋湿的处理器板又能重新工作而收获应得的报酬。

在当今的商业世界,典型的数字工程师只能从数字的功能性方面获得回报,而不是为生产所作的全面准备工作。

结论

我们可以依靠我们的EMC专家、信号完整性专家和大学里的所有智慧的研究者来帮助消除以上这五种误解,从而帮助我们减少在今后的十年中将面对的EMC难题,这样计算机产业的未来将大为改观。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

选择正确的电容器种类、功率电感器、开关频率和半导体对于 DC/DC 开关电源控制器的效率至关重要。做出正确的选择并非易事,但即使做出了正确的选择,控制器也必须具有高效率且符合 EMC 要求才能上市。

关键字: DC/DC 转换器 EMC

总阻抗(Total Impedance)是指在整个电路或系统中,所有元件对电流的阻碍作用的总和。它是交流电路中一个重要的参数,用于描述电路对交流电的阻碍程度。总阻抗由电阻、感抗和容抗三者组成,其中电阻是由导体本身的特性决...

关键字: 阻抗 阻抗计算

近日某厂员工爆料,公司程序员因线上流量异常BUG事故,被公司进行处罚。处罚的结果是被要求将去年发的 4 万多年终奖归还给公司,否则就收取滞纳金并辞退,逾期将以每天万分之 5 的利息收取滞纳金。

关键字: 程序员 BUG 事故 年终奖 工程师

电压跟随器是一种输入输出电压相同的放大电路。这个电路的输入阻抗高,输出阻抗低,且电压增益为1。这意味着电压跟随器对输入电压信号的影响很小,输出电压与输入电压相等,输出电流可以比较大。

关键字: 电压跟随器 阻抗 电压增益

在通信系统中,按照接地功能不同分为工作接地、保护接地和防雷接地。工作接地又可分为直流工作接地和交流工作接地。防雷接地也称为过电压保护接地。

关键字: 通信设备 通信系统 接地

罗德与施瓦茨(下文简称R&S)和Applus 实验室完成EMC 测试环境中 eCall 测试。 测试包括符合 UN ECE R10 标准的不同 eCall 场景测试和功能测试,该标准规范了汽车相关的 EMC。

关键字: EMC eCall 测试 蜂窝网络模拟器

近日,运营商乱收费冲上热搜!一名刚被辞退的工程师向河南电视台都市频道节目爆料了联通公司业务创收的丑闻。

关键字: 工程师 运营商 光猫 联通

本文中,小编将对嵌入式软件/硬件工程师予以介绍,如果你想对嵌入式软件/硬件工程师的详细情况有所认识,或者想要增进对嵌入式的了解程度,不妨请看以下内容哦。

关键字: 嵌入式 嵌入式软件工程师 硬件工程师 工程师

随着汽车电子技术的不断发展,汽车电子系统变得越来越复杂,其中包含了大量的电子设备。这些设备在运行过程中会产生电磁干扰,影响汽车的正常运行。因此,提高汽车电子设备的电磁兼容性(EMC)变得越来越重要。本文将详细介绍如何在汽...

关键字: 汽车电子 EMC 电磁兼容

随着汽车电子技术的不断发展,汽车电子设备数量大大增加,工作频率逐渐提高,功率逐渐增大,使得汽车工作环境中充斥着电磁波,导致电磁干扰问题日益突出。电磁兼容性(EMC)是指设备或系统在其电磁环境中能正常工作,并不对环境产生不...

关键字: 汽车电子 电磁兼容 EMC
关闭
关闭