当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]可穿戴电子系统的发展,不论生物计量、通信还是虚拟现实,都将嵌入式系统概念延伸到新的未知领域。把传感器和输出设备放到操作人员身上,产生了一个新词--电子人:人类和嵌

可穿戴电子系统的发展,不论生物计量、通信还是虚拟现实,都将嵌入式系统概念延伸到新的未知领域。把传感器和输出设备放到操作人员身上,产生了一个新词--电子人:人类和嵌入式系统的结合。

可穿戴系统为实际应用开辟了新远景,需要重新展望嵌入式体系结构。以可黏贴或者可摄入方式所使用的传感器群完全与传统的电源、接地和I/O连接相隔离。为实现微小体积以及近乎零功耗,小传感器群要支持传统的本地信号处理、存储和无线互联,而且不限于此。这是设计师必须要解决的两难问题。

把系统分开

解决可穿戴系统难题的一种方法是参照传统的嵌入式系统设计,这包括了传感器、致动器以及与用户身体连接的显示屏等。在移动性、舒适性和可隐藏需求的推动下,需要把系统分开。传感器、输出设备和计算资源在物理上彼此分开后,看一下系统体系结构会有什么变化。

作为一个例子,参考智能眼镜的设计。为避免老生常谈,我们不讨论大家熟悉的消费类产品,而是看一下工业设备供应商 XOEye 设计的眼镜。这些眼镜用于元器件观察、库存处理、现场维护等活动。这一系统具有立体安装 720 线视频摄像机、语音输入,以及 LED 和语音输出,设计实现了以交互式方式帮助人们完成某些预先定义好的任务。

XOEye 首席技术官 Jon Sharp 解释说,这一眼镜采集并分析用户所看到的立体图像,增强了对元器件的分辨能力,不需要物理接触或者测量工具就能够测量尺寸和形状,在维修过程中与技术人员交互--“先调整左侧的螺丝”,或者通过闪烁的红色LED警告有可能出现的安全伤害。“不要到那里去!”

这类设计传统的方法会使用安装在眼镜上的摄像机和麦克风,然后进行视频处理,目标识别,通过背在后面的背包和电池建立无线通信链路。对这一设计,传统的用户响应是看一下背包,然后小心翼翼弯下腰去使用系统。

让我们进入可穿戴技术这一概念。XOEye的方法是实现完全自主的眼镜。这一目标很明显有空间和功耗限制。我们不可能变魔术,这些限制迫使必须远程完成某些计算,一般是在云端。但是对计算载荷进行划分也带来了新的设计难题。

建立链接

在物联网(IoT)上,把大量的计算任务移到云端并不是什么新概念。创想技术公司业务开发资深总监 Chakra Parvathaneni 指出,这种划分随应用而不同。他注意到,“家庭恒温调节器有很多本地处理任务,但是苹果的Siri几乎都在云端。”

在XOEye的例子中,把任务移到云端意味着要么有足够的带宽来传送原始格式的两路视频流,要么在眼镜中实时完成视频压缩。后者采用现有的媒体处理芯片是可行的,但是要有体积合适的电池。可是,还有另一个问题。

Sharp 提醒说,“即使没有链接时,您也必须维持人机接口以及某些功能。例如,当您失去 WiFi 连接时,一定要实时识别安全问题。” 某些功能会要求一定程度的连续实时响应 - 互联网远端的云计算是无法保证的。

这些问题要求进行本地处理,与眼镜的大小、重量和功耗限制相矛盾。XOEye最初想采用MCU 与加速器相结合的OMAP体系结构来解决这一问题。OMAP SoC能够处理传统的媒体处理任务,但是,Sharp感叹到, “无法实现实时立体测距。” 因此,XOEye转向CPU加FPGA的方法,不论应用需要什么样的任务,他们都能够建立高能效的本地加速器。

  智能集线器

即使工作条件能够保证与无线集线器的本地互联,从集线器通过互联网到云端的来回链路仍然会引入不可接受的不确定性。这是IoT所面临的结构难题之一。考虑到这些情况,如果要在可穿戴设备之外完成某些计算任务,那么,可以将其放在本地无线集线器上,而不是云端 (图1)。当然,这就不能只使用商用WiFi集线器。

  图1. 可穿戴嵌入式系统成为智能集线器无线网络

在WiFi集线器中集成计算节点大幅度提高了系统设计的灵活性。相对而言,集线器在空间和功耗上一般不受限制,因此,您可以把一些计算和存储资源放在那里。短距离WiFi链路能够提供可靠的宽带、可预测的延时连接,支持集线器参与关键控制或者人机接口循环,在这其中,意外的延时会带来问题。而且,集线器带有多任务CPU和相应的加速器,完成很多远程可穿戴设备的处理任务。

  智能射频

如果可穿戴设备比眼镜小很多,比如腕带,置入到鞋内的器件,以及大点的药丸等,那会怎样呢?没有足够的空间容纳大电池,就无法支持大功率,WiFi也就无法一直保持接通。无线方式转向了蓝牙或者功耗极低的短距离链路。集线器现在本身成为可穿戴设备,装在皮带上或者口袋里,与传感器在一米距离内 - 如果只支持近场无线链路,那就可能会非常近。而任务划分问题以很有趣的方式发生了变化。

一些难题反而促进了可穿戴设备的发展。至少要包括传感器、查询这些传感器的控制器,以及无线接口。仔细的调整占空比,微小电池能够支持这些负载--低能耗设备。但是,现在把计算放在哪里呢?

传感器和第一级传感器处理之间的带宽成为很大的问题。无线链路能够实时承载来自传感器的原始数据流吗?如果不能,能否把一些能耗花在提高链路带宽,或者传感器的本地处理上?如果系统用户模型变化了,答案会不同吗?

解决这一问题的一种途径是重新思考射频。设计人员倾向于在无线接口中放置基带处理器,作为抗干扰黑盒。但是,创想技术公司的Parvathaneni建议深入了解其内部。例如,创想技术公司有一系列射频处理单元(RPU)基带处理器子系统,让系统设计人员在两方面更加自由。

Parvathaneni说,在内部,Ensigma RPU (图2) 包括了通用MIPS CPU内核,由一组特殊加速器提供支持。因此,功能是软件定义的,用户可以通过修改代码来改变射频空中接口。这是一方面的自由,您可以调整基带所消耗的功率,以匹配特定无线链路的带宽和距离要求。Parvathaneni还解释说:“在很多情况下,空中接口为主任务的MIPS内核留下了空间。” 因此,系统设计人员可以选择空中接口标准,然后,将一组处理任务装入到RPU中,不用改变硬件设计,随时可以进行,以应对可穿戴系统工作模式的变化。在某些情况下,这种灵活性避免了在传感器所在地采用MCU或者压缩引擎。

图2. 创想技术公司的 Ensigma Whisper 实现了可编程基带处理器以及MIPS内核和一组低功耗加速器

不限于射频的无线

可穿戴传感器越来越小,越来越轻,几乎是一次性的,因此,支持空中接口的硬件和能耗等问题越来越重要。对此,IP创业公司Epic半导体提出了很有趣的建议,无线链路不采用射频,而是其他的。据Epic的CTO,Wolf Richter,办法是采用电场。

Epic出于三种不同目的而开发了一种使用外部电极的技术--小型的导体片或者导体箔。首先,电路从周围电场获得能量。在三到五秒内,设备能够收集足够的能量,为5 mW负载供电一段时间。Richter举了一个例子,包括在运行速率是3 MHz的ARM Cortex-M0上执行任务,重新写入15V电子墨水非易失显示屏,或者短暂的激活30V印刷电路。

其次,Epic知识产权(IP)能够检测到调制电场的任何物理现象,就像一个典型的电容传感器。Richter说,例如,设备可以检测到大约三米附近出现的人。其他较普通的应用包括测量附近物体表面的介质常数--系统可以从中推断出生物体的温度、脉搏和肌肉活动。或者,在完全不同的环境中,传感器可以从介质常数的变化来推断出包装好的肉类表面的腐败程度。

最后,这一技术在双向信号上可以使用相同的电极,通过监视并调制电极上的电场,实现无射频近场通信。这样,一个0.25 mm2硅片能够为智能表面、贴片或者某些类似的介质提供电源、传感和互联功能。

划分的一些事情

我们可以把可穿戴系统看成是传统的嵌入式系统,极端的移动性对每一组件提出了不同寻常的体积、重量和功耗限制。这些限制的影响是对系统进行划分,从主体中分开,只有无线链路连接两部分。在智能眼镜的例子中,系统仍然保持不变,只有大量的存储和最繁重的计算任务通过IoT放到云端。

在复杂的生物计量系统中,独立的贴片、扎带以及置入传感器离开了中央单元,每个都有短距离无线链路,有足够的计算能力来管理带宽,执行本地控制循环。系统会完全是分布式的,中央单元只用作短距离无线连接的集线器,只要允许就可以通过WiFi或者蜂窝网络连接云端资源。

实现这类系统听起来非常简单。找出物理拓扑、传感器在哪里。选择距离和数据速率能够被传感器和拓扑所支持的无线链路。选择本地计算和电源设计,满足传感器的本地控制循环要求,提供无线链路需要的数据压缩、纠错、滤波和宽带处理要求。重复直至完成。

这一简单的方法有两个问题。第一个是不可预测的无线链路。很多系统限制要求可穿戴网络维持一定的功能,在无线链路失效时,至少不能带来伤害,系统实际上已经成为网络。这种要求意味着冗余传感器或者射频通道,可能需要更多的本地处理功能。

第二个问题是安全。出于私有和安全考虑,每一级的可穿戴网络必须保护自己不受攻击。与有线IoT系统完全不同,任何无线链路的两端都不能确定对端就是他自己所宣称的身份,也不能保证自己不受攻击。这在医疗系统中尤其如此。有协议可以保证安全等级,但是要求每一远程节点都进行一定级别的认证和加密。而且,谨慎起见,要求一定等级的功能安全监视,防止致动器在任何环境下产生任何伤害。然而,在目前的设计中,还不能满足这类悲观的需求。这必定会改变。结果是要求更多的本地计算,特别是致动器和显示屏,仍然满足本地节点的空间和电源限制要求。这种自相矛盾会越来越多的体现在节点和集线器应用CPU加可编程加速器体系结构等概念中,还会体现在控制、传感器处理和安全任务中。

我们可以深入到目前的嵌入式系统中,重新分配计算任务,预测未来的可穿戴网络。已经出现了能够实现这些分布式节点的技术。聪明地使用这些技术会深刻的改变我们目前对嵌入式系统体系结构的看法。

作者:Ron Wilson

总编辑, Altera

0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

台湾新竹 – 2024年4月23日 – 著名的微控制器供货商新唐科技公司,与全软件开发生命周期提供跨平台解决方案的全球软件公司Qt Group宣布深化合作,扩展新唐科技人机界面(HMI)平台支持「Qt for MCUs」...

关键字: 微控制器 嵌入式系统 MCU

随着物联网、嵌入式系统以及微控制器技术的飞速发展,微控制器已成为众多智能设备和系统不可或缺的核心组件。而微控制器的正常工作,离不开烧录器的精准操作。C8051F021烧录器,作为一款高效、稳定、易用的微控制器烧录工具,在...

关键字: c8051f021烧录器 联网 嵌入式系统

为增进大家对嵌入式系统的认识,本文将对嵌入式系统、嵌入式系统的特点予以介绍。

关键字: 嵌入式 指数 嵌入式系统

2024年4月18日,国民技术第四代可信计算芯片NS350 v32/v33系列产品正式发布并开始量产供货。NS350 v32/v33是一款高安全、高性能、超值可信密码模块2.0 (TCM 2.0)安全芯片,适用于PC、服...

关键字: PC 服务器平台 嵌入式系统

2024年,嵌入式系统将走向何方?如何才能走在趋势的前沿?从工厂到家电,从医院里昂贵的医疗设备,到随处可见的可穿戴设备,我们身边的联网设备越来越多,生活更加绿色低碳,嵌入式系统功不可没。ST于3月19日成功举办STM32...

关键字: 嵌入式系统 可穿戴设备

在嵌入式系统开发、调试和测试过程中,J-Link作为一种高效的调试工具,为开发者提供了极大的便利。然而,要想充分发挥J-Link的功能,首先需要正确安装其驱动程序。本文将详细介绍J-Link驱动的安装过程,并深入解析其中...

关键字: jlink 嵌入式系统 嵌入式开发

与谷歌的合作使 Nordic 能够在 nRF Connect SDK 中嵌入开发人员软件,以构建与安卓移动设备兼容的谷歌Find My Device和未知跟踪器警报服务

关键字: 谷歌 SoC 嵌入式开发

嵌入式开发作为当今电子工程和信息技术领域的核心分支,涵盖了广泛的软硬件技术和系统集成方法,用于构建高性能、低成本、低功耗、体积小巧且功能专一的嵌入式系统。这些系统无处不在,从微型传感器节点到复杂的工业控制设备,从日常使用...

关键字: 嵌入式开发 Python

嵌入式开发是当今信息技术领域不可或缺的一部分,它融合了硬件设计、软件开发和系统集成等多个学科,专门用于创建那些被嵌入到特定设备或系统中的专用计算机系统。嵌入式开发的主要过程包括利用分立元件或集成器件进行电路设计、结构设计...

关键字: 嵌入式开发 硬件设计 软件开发

嵌入式开发作为一种专业且技术密集型的领域,涵盖了从硬件底层驱动、中间件到应用层软件开发等多个层面的工作,其所需的工具种类繁多,各有针对性,旨在提升开发效率、保证代码质量以及简化调试过程。

关键字: 嵌入式开发 keil
关闭
关闭