当前位置:首页 > 嵌入式 > 嵌入式硬件

引言

  直径为10mm的沥青球试样安放于浸泡在传热介质中的支架上,当加热到一定温度时,沥青熔化,此时从试样上会有沥青溶液通过支架上的孔滴下,被装在其下面的光电检测装置检测到,这时的温度就为沥青的软化温度。整个过程在1000mL的烧杯里进行。

  1系统硬件结构

  整个系统为以AT89C51单片机为核心的控制器,硬件结构框图见图1所示,可以分为以下几个部分。

  (1)单片机及键盘、显示器等外围电路采用AT89C51单片机芯片作为处理器,其片内自带4KB的E2PROM,且指令系统与Intel MCS-51完全兼容。本系统采用汇编语言编程,控制程序容量约2KB,所以不需另外扩展程序存储器,使得控制电路得到简化,另外芯片内的128个字节的用户RAM也足够系统使用。

  根据仪器操作的需要,在仪器面板上设计了两个按钮,—个是“测试”键,另一个是“结果”键,由P1.0和P1.1分别控制。上电后,按下“测试”键,P1.1输入低电平,仪器启动,否则不启动;任何时候按下“结果”键,P1.2输入低电平,此时若测试没有结束,显示结果变为零,若测试己结束,显示软化点温度。

  为避免系统扩展并行接口芯片,采用单片机串行接口方式0的输出方式,外接两片74LS164移位寄存器来构成八位LED显示器接口,其一片的输出端通过PNP型三极管用来作显示器的位控,接至显示器的字位口;另一片输出控制要显示的数据码,且为了提高驱动能力,在该芯片输出端接一片74LS245输出数据至显示器的字型口,使输出电流扩大至20mA。八位显示器中左四位为时间显示,单位为分,右四位为温度显示,单位为℃,均精确到小数点后面一位。

  (2)加热控制回路采用晶闸管控制加热回路的触发,在回路中接有加热指示灯,测试时通过观察仪器面板上指示灯的亮与灭得知电阻丝的加热与停止。当监控程序判断出需要加热时,单片机P1.4口发出低电平,使PNP型三极管8850导通,经MOC3041光电隔离,在其4引脚输出晶闸管的触发控制信号,使晶闸管触发端触发导通,加热电阻丝由220伏的交流电供电加热;当控制程序判断出需要停止加热时,单片机P1.4口发出高电平,使8850处于截止状态,停止电阻丝的加热。电路抗干扰能力强,输入输出完全隔离,绝缘性能良好。

  (3)温度信号采集、放大及转换回路采用P?N结型温度传感器——三极管9013来获取温度数据。这种传感器灵敏度高,线性度好。其测温范围为0℃~+125℃,随着温度的升高其基极和发射极之间的电压下降,变化率(温度系数)为2mV/℃。为了得到更高的测量精度,可以采用软件补偿的方法,根据9013的温度-电压特性曲线,计算出每个温度数据下需要补偿的电压值,在A/D转换程序中加以补偿。9013测得的电压信号经带有差动输入的通用集成运放LM324进行放大。

  为把放大器输出的模拟电压转化为数字信号输入给单片机,采用LM331型压频变换器。LM331的输入信号即为放大器的输出电压,经LM331转换为一定频率的脉冲,该脉冲信号直接连到AT89C51的T1端(片内定时/计数器T1的外部计数输入端),由T1计该脉冲序列的个数,从而实现了模数转换。LM331的电压信号输入端的值为0~10V,相应的输出端的频率信号为10~10kHz。由于LM331输出的是频率信号,所以抗干扰能力强,线性度高,且传输简单、方便。只需1根输出信号线与单片机直接连接,大大节约了系统端口资源,简化了控制电路设计。

  (4)检测回路为了确保可靠地检测沥青软化,安装了两个光电检测装置,当两个检测装置都检测到沥青软化(沥青溶液滴下,把检测装置光发射端的光挡住,使接收端收不到光)时,则其输出端分别发出高电平信号。为了防止水中杂质及水沸腾产生的水泡引起的微弱信号使检测装置发生误动作,用运算放大器LM324作电压比较器,只有当输出信号具有一定强度才能使电压比较器输出高电平;该信号分别经三极管连接使P1.6和P1.5得到低电平输入信号;当P1.6和P1.5同时检测到低电平时才认为沥青已软化。此时,加热回路被切断。实验结束,记录下该时刻的温度,该温度值即为沥青的软化温度。

  2系统软件设计

  软件采用模块化结构,由主程序和中断服务程序构成。AT89C51的T0用来控制加热与停止的时间,时间基准为2ms,工作于方式0下的中断方式;T1工作于方式0计LM331输出的脉冲数,由于LM331输出的最大值为10kHz,故T1不可能计满溢出。主程序包括系统的初始化模块、温度控制模块、A/D转换及数据处理模块、标准数据存储模块等。中断服务程序包括键盘处理和数据显示等。初始化的内容包括堆栈指针、中断允许寄存器、定时器的工作方式寄存器等的设置,定时器初值的设置,定时器的启动,内部RAM单元的清零等。在中断服务程序中,每隔0.5秒扫描一次键盘程序,每隔1.2秒读一次A/D转换的温度数据。由于升温过程不是一个线性过程,必须进行实时控制。在控温程序中,将读得的温度数据与标准温度数据进行比较,若超过该标准数据,即进行超温处理,否则进行欠温处理。

  主程序流程图见图2,其中的控温程序流程图见图3。?

  3结束语

  经过实际使用,该沥青软化点仪测试精确,性能稳定,抗干扰能力强。在实际使用中,为了使温度场均匀,在容器中添加了磁力搅拌,进一步提高了测试的精确度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭