当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于FPGA及嵌入式CPU(NiosⅡ)的TFT-LCD接口设计

摘要:本文介绍了一种基于 FPGA及 NiosII软核处理器与 TFT-LCD接口的方法。它直接采用 CPU对存贮器的读写,实现了对 TFT-LCD屏的实时操作。它具有直接、有效和速度快等特点。该设计使 CPU对 TFT-LCD的控制极其简单化。

1 引言

随着电子技术的飞速发展,TFT-LCD作为在亮度、对比度、功耗、寿命、体积和重量等综合性能上全面赶上和超过 CRT的显示器件,被广泛用于各种仪器仪表、电子设备及控制领域中。与之相关的显示控制技术也呈现出越来越多的方式。本文以 640*480的数字输入的 TFT_LCD显示屏为例,介绍了一种基于 NiosII软核处理器实现对 TFT-LCD接口的方法。解决了通常情况下必须使用LCD 控制专用芯片才能解决 LCD显示的问题。

2 系统组成

系统框如图 1所示。系统是由 FPGA、显示缓存 RAM、程序执行 RAM及 TFT-LCD组成。 FPGA(用虚线围成)选用的是 ALTER的 EP1C6,RAM采用的是 IDT的 IDT71V547,LCD为 640*480的彩色 TFT-LCD屏。在 FPGA内部是由时序发生、 地址切换、数据分离、调色电路及嵌入式 CPU(NIOS内核)五部分组成。

3各器件的功能

3.1显示缓存 RAM

采用 IDT公司的 IDT71V547 128K X 36bit的 SRAM芯片,工作电压为 3.3V [1]。该芯片作为显示缓存,TFT_LCD读取显示缓存 RAM中的数据并将其在 TFT_LCD上显示。嵌入式 CPU(NIOSⅡ)对显示缓存 RAM的改写就相当于对 TFT_LCD显示内容的改写。

3.2 FPGA 本文 FPGA选用的是 ALTERA公司的 Cyclone 系列中 EP1C6Q240。

3.2.1 时序发生电路

首先由外部输入一相当的频率时钟,通过 FPGA内部的锁相环电路(PLL)生成 100MHz的时钟信号。系统对 100MHz时钟计数生成 50MHz的时钟给嵌入式 CPU(NIOSⅡ)作为嵌入式 CPU的工作主频,同时生成 TFT_LCD所须的场同步时钟、行同步时钟、显示使能时钟和 25MHz的 TFT_LCD主时钟;生成地址切换控制信号、数据分离控制信号,由嵌入式 CPU输出的读写信号产生显示缓存 RAM的读写信号。

3.2.2调色电路

由于文中是以 256色的电路为例,所以,调色电路是将 8位数据译码成 3*6位的三基色数据,调色电路也可以是 ROM型或 RAM型。如果作成 RAM型,可以依据嵌入式 CPU需要显示的图象相应修改调色电路,可显示更丰富的色彩。

3.2.3地址切换、数据分离

此部分电路的作用是:在嵌入式 CPU操作显示缓存 RAM时将地址、数据线切换到嵌入式 CPU,在 TFT-LCD读显示缓存 RAM时将地址、数据线切换到 TFT_LCD。

3.3 TFT-LCD

SHARP公司生产的 *英寸液晶显示屏LQ064V3DG01是较为常用的 TFT-LCD液晶显示屏,它的分辨率为 640×480×RGB[2],具有功耗低、体积小、重量轻、超薄等特点,同时该显示屏是一片真彩显示屏,并属于透光型的 TFT、其亮度高、视角宽、背光灯的寿命也很长,并且采用的是 AG涂层和 260K的彩色显示。可广泛应用于各种仪器仪表及各种视频显示的场合。

4主要电路的设计

4.1时序发生电路的设计

时序发生电路是设计的主要部分。首先,是对系统输入时钟进行频率变换, FPGA(EP1C6)的内部有两个 PLL电路模块,本文用其中的一个来生成 100MHz的时钟。再设计一个 12位的计数器(行计数器),计数 3200脉冲,产生 TFT_LCD的行同步时钟,通过此计数器的计数还可生成 TFT_LCD的显示使能信号(DE)。此计数器的输出还是 TFT_LCD读显示缓存 RAM地址的低 8位(RAM以 32位数据宽度计算)。另设计一个 9位的计数器(场计数器),用其对行同步信号计数又可生成 TFT_LCD场同步的相关信号,同时此计数器的输出可作为 TFT_LCD读 RAM地址的高 9位。

由于嵌入式 CPU与 TFT_LCD是复用一片显示缓存 RAM,所以要对显示缓存 RAM在时间上进行分时控制。由于 IDT71V547是 32位数据宽度的 RAM,如果将 TFT_LCD设计成256色显示,则读显示缓存 RAM一次可显示 4个像素点。所以把行计数器输出的 25MHz时钟作为基准(TFT_LCD主时钟)、以 25MHz的 4个周期(T0、T1、T2、T3,T0=T1=T2=T3=40纳秒)为基本循环,在 25MHz的第一个周期( T0)由 LCD占用产生“ LCD_读选通”信号, (LCD_读选通= (/12.5MHz)&(/6.25MHz) )。T1-T3由 CPU占用,在 T1-T3周期内产生相应的选通信号, (T1=(12.5MHz)&(/6.25MHz)、 T2=(/12.5MHz)&(6.25MHz)、T3=(12.5MHz)&(6.25MHz)),由于 CPU什么时间对显示缓存 RAM读写是不确定的,所以要根据 CPU的读写信号来确定 T1-T3哪个为“CPU_RAM_选通”信号(如果在 T0内来 CPU_RW则 CPU_RAM_选通=T2、T1来 CPU_RW则为 T3、T2来 CPU_RW则为 T3、T3来 CPU_RW则为 T1)。此逻辑的实现方式是,在 CPU_RW信号产生时锁存住当时的 T0-T3的状态由此来控制“CPU_RAM_选通”产生的位置。在具体时序见图 2所示。

4.2地址切换和数据分离电路的设计

图 3是地址切换电路中的一位,以这一位为示例 ,可推出 17位地址全部电路。在图 3中 RAM_ADD=((LCD_ADD&LCD_选通)+(CPU_ADD&CPU_RAM_选通))且 “LCD_读选通”信号与“ CPU_RAM_选通”信号在任何时刻最多只能有一个是有效的,所以当“ LCD_读选通”信号与“ CPU_RAM_选通”生效时可将 RAM_ADD切换到相应的地址线上。如当某时刻“ LCD_读选通”信号与“ CPU_RAM_选通”全无效则 RAM_ADD输出应全为“ 0”。

图 4是数据分离电路中的一位,同样 ,以图 4这一位可推出 32位数据线。

在图 4中,RAM_R_W= (CPU_RAM_选通)&(CPU_WD),当 RAM_R_W有效时, CPU_写 DATA可通过三态门输出到 RAM_DATA上。当 CPU读 RAM时,RAM的数据由门电路输出到锁存器的输入端,在数据稳定后由“ CPU_R_锁存”信号将数据锁存在锁存器上等待 CPU将数据读走(CPU_R_锁存=(( / CPU_RD)& CPU_RAM_选通&25MHz&(/50MHz)))。

同样的在 T0周期内将 RAM的相应数据由“ LCD_锁存”信号将 32位的数据锁存在锁存器上。在相应的 T0-T3周期由 T0-T3选择相应的 8位数据输出到调色电路上,在相应时刻由 “LCD_调色输出锁存”信号将此像素点数据锁存,由 TFT_LCD读取此点的三基色数据并显示。

4.3调色电路

调色电路实际为利用 FPGA内部的片内 RAM,由 Quartus 软件生成的 24位 256字节的 RAM或 ROM,RAM或 ROM的地址线接 LCD数据锁存器的输出端后的数据选择电路,数据选择电路是将 32位的数据,按 T0-T3所决定的时间,选择相应的 8位数据。当 T0时选 D[24]-D[31]、当 T1时选 D[0]-D[7]、当 T2时选 D[8]-D[15]、当 T3时选 D[15]-D[23]。之所以将数据选择设计成 T0时选 D[24]-D[31],是因为 TFT_LCD读显示缓存 RAM时,是在 T0周期的末端才能将新数据锁存到“ LCD-读 DATA”端,新的数据只有在 T1周期才能开始显示。调色电路的输出是 3*8=24bit的本文所用的 TFT_LCD是 3*6bit的所以只用相应 8bit的低 6bit。如果将调色电路设计选择 RAM型时,可以由 CPU改写调色电路 RAM,使色彩显示更加丰富。

4.4显示缓存设计

显示缓存 RAM的选择由 LCD显示彩色多少决定的,如果显示 16色可以选择每像素点占 4bit,这样每读一次 RAM可显示 8个像素点。以此类推来选择显示缓存 RAM的大小和相应修改时序发生电路的周期。对 CPU的显示缓存 RAM口的设置时,一定要注意显示缓存 RAM的 CPU读写周期与时序发生电路的周期相一致,否则会发生读写错误。本例设置的是 160纳秒( T0+T1+T2+T3=160ns)[3,4]。

5 结束语

本文介绍了一种基于 FPGA及 NiosII软核处理器与 TFT-LCD接口的主要部分的设计要点,该设计内容已经在实际电路上得到验证,并在一些仪器的显示系统上得到应用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭