当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]麻省理工科技评论》(MIT Technology Review)近期刊出了“2014十大突破性科学技术”的文章,神经形态芯片(Neuromorphic Chips)名列其中。本文就这一技术进行简要分

麻省理工科技评论》(MIT Technology Review)近期刊出了“2014十大突破性科学技术”的文章,神经形态芯片(Neuromorphic Chips)名列其中。本文就这一技术进行简要分析。

1 神经形态芯片与传统芯片的区别

1946年美籍匈牙利科学家冯·诺依曼提出存储程序原理,把程序本身当作数据来对待。此后的半个多世纪以来,计算机的发展取得了巨大的进步,但“冯·诺依曼架构”中信息存储器和处理器的设计一直沿用至今,连接存储器和处理器的信息传递通道仍然通过总线来实现。随着处理的数据量海量地增长,总线有限的数据传输速率被称为“冯·诺依曼瓶颈”——尤其是移动互联网、社交网络、物联网、云计算、高通量测序等的兴起,使得“冯·诺依曼瓶颈”日益突出,而计算机的自我纠错能力缺失的局限性也已成为发展障碍。

结构上的缺陷也导致功能上的局限。例如,从效率上看,计算机运算的功耗较高——尽管人脑处理的信息量不比计算机少,但显然而功耗低得多。为此,学习更多层的神经网络,让计算机能够更好地模拟人脑功能,成为上世纪后期以来研究的热点[如微软研究院的“深度学习(或深度神经网络,DNN)”]。

在这些研究中,核心的研究是“冯·诺依曼架构”与“人脑架构”的本质结构区别——与计算机相比,人脑的信息存储和处理,通过突触这一基本单元来实现,因而没有明显的界限。正是人脑中的千万亿个突触的可塑性——各种因素和各种条件经过一定的时间作用后引起的神经变化(可变性、可修饰性等),使得人脑的记忆和学习功能得以实现。

2 神经形态芯片的发展简史

因此,模仿人类大脑的理解、行动和认知能力,就成为重要的仿生研究目标。1990 年,加州理工学院名誉教授Carver Mead给出了神经形态芯片的定义——“模拟芯片不同于只有二进制结果(开/关)的数字芯片,可以像现实世界一样得出各种不同的结果,可以模拟人脑神经元和突触的电子活动。”然而,Carver Mead本人并没有完成模拟芯片的设计。

此后,Audience公司出于对神经系统的学习性和可塑性、容错、免编程、低能耗等特征进行了研究,研发出基于人的耳蜗而设计的神经形态芯片,可以模拟人耳抑制噪音,应用于智能手机。Audience公司也由此成为行业内领先的语音处理芯片公司。

IBM公司在1956 年创建第一台人脑模拟器(512 个神经元)以来,就一直在从事对类人脑计算机的研究,模仿了突触的线路组成、基于庞大的类神经系统群开发神经形态芯片也就自然而然地进入了其视野。其中,IBM第一代神经突触(neurosynaptic)芯片用于“认知计算机”的开发——尽管“认知计算机”无法像传统计算机一样进行编程,但可以通过积累经验进行学习,发现事物之间的相互联系,模拟大脑结构和突触可塑性。在美国国防高级研究计划局(DARPA)的资助下,IBM的“自适应可变神经可塑可扩展电子设备系统”项目(SyNAPSE) 第二阶段项目则致力于创造既能同时处理多源信息又能根据环境不断自我更新的系统,实现神经系统的学习性和可塑性、容错、免编程、低能耗等特征。项目负责人Dharmendra Modha认为,神经芯片将是计算机进化史上的又一座里程碑。

IBM的新芯片架构没有固定的编程,把内存与处理器集成在一起,模仿大脑的事件驱动、分布式和并行处理方式。从目前来看,尽管神经形态芯片的能力还远不及人脑(IBM 2012年开发的模拟人脑的超级计算机已可模拟出相当于5千亿神经元以及137亿神经突触的计算架构系统,但系统的运行速度相比于人脑要慢1 542倍),但与传统的计算机相比,其在处理感官数据、学习数据变化的能力方面优势明显。根据计划,2019年IBM将会利用88万CPU,研制出与人脑速度相当的模拟人脑系统。

在IBM以前,瑞士的苏黎世大学和苏黎世联邦理工学院等已经做了较长时间的神经形态芯片研究,但采用的主要是模拟电路或数字/模拟混合电路。但是,模拟电路易受漏电流的影响,从而带来噪声过大等问题,因而性能上并未最优化。IBM的做法,则是采用了数字电路,解决这一问题。除了IBM外,HRL实验室、高通公司等也做了较多的神经形态芯片开发,其中高通公司的芯片预计会在2015年上市。

3 仿生模拟的应用

模拟人脑系统的开发,就必须要以神经形态芯片作为基础支撑。人脑启发软件公司 Numenta创始人Jeff Hawkins曾评论,“人工智能绝对不能靠软件来实现,需要用芯片来完成。”“零项目”工程师 M. Anthony Lewis则认为,“即便还是以数字的形式来完成,我们已经可以复制大脑的很多行为。”

有了神经突触运算芯片外,部分程度地再现生物系统中神经元和神经突触的运作模式,寻找对象之间的关联性,提出假设,进行记忆和学习等都成为了可能,使得芯片在很大程度上实现过去几十年来的人工智能领域开发的功能。例如,基于神经形态芯片的智能传感器和设备,可用于病情的智能监测,从而使得健康监测系统可以监测生命体征,及早发现潜在的风险,为病人提供个性化的治疗手段。在面部识别等涉及图像、声音和其他感官数据的处理领域,通过智能终端来关注用户的行为和环境,学习用户的习惯,也成为可能。对此,高通公司的技术总监Matthew Grob曾评论,“我们正在模糊芯片和生物系统之间的隔阂。”事实上,HRL实验室已经计划测试将神经形态芯片植入到鸟类中,由芯片处理来自摄像机和其他传感器的数据,能记住飞过的房间,学会导航。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2025年9月5日 /美通社/ -- 由上海市经济和信息化委员会、上海市发展和改革委员会、上海市商务委员会、上海市教育委员会、上海市科学技术委员会指导,东浩兰生(集团)有限公司主办,东浩兰生会展集团上海工业商务展览有...

关键字: 电子 BSP 芯片 自动驾驶

9月1日消息,继小鹏、零跑后,现在小米汽车也宣布了8月的交付量。

关键字: 小米汽车 芯片

首个采用高分辨率太阳观测数据训练的太阳物理学人工智能 (AI) 基础模型,旨在深入探索太阳动态表面,对可能干扰地球和太空技术的太阳天气做出有效规划。 该模型已发布在 Hugging Face 开源平台,旨在加快...

关键字: IBM NASA 开源 模型

当地时间 8 月 22 日,美国芯片制造商英特尔公司宣布与美国联邦政府达成协议,后者将向英特尔普通股投资 89 亿美元,以每股 20.47 美元的价格收购 4.333 亿股英特尔普通股,相当于该公司 9.9% 的股份。

关键字: 英特尔 半导体 芯片

在当今数字化时代,人工智能(AI)和高性能计算(HPC)的迅猛发展对 GPU 芯片的性能提出了极高要求。随着 GPU 计算密度和功耗的不断攀升,散热问题成为了制约其性能发挥的关键因素。传统的风冷方案已难以满足日益增长的散...

关键字: 人工智能 高性能计算 芯片

多数受访粉丝认为,AI驱动的功能会对他们观看体育赛事的方式产生重大影响 超过半数的受访者希望通过AI技术获得对过去、现在和未来体育赛事的评论和分析 移动体育应用...

关键字: IBM AI 应用程序 移动

8月20日消息,博主数码闲聊站暗示,9月底大概率只有小米16系列会亮相,其它骁龙8 Elite 2旗舰、天玑9500旗舰新品都将排到10月份,新机大乱斗会在国庆假期之后开始。

关键字: 小米雷军 芯片

8月21日消息,据媒体报道,英伟达宣布将自研基于3nm工艺的HBM内存Base Die,预计于2027年下半年进入小规模试产阶段,此举旨在弥补其在HBM领域的技术与生态短板。

关键字: 英伟达 黄仁勋 芯片 显卡

继寻求收购英特尔10%的股份之后,近日又有消息称,特朗普政府正在考虑通过《芯片法案》资金置换股权的方式,强行收购美光、三星、台积电三大芯片巨头的股份。若此举落地,美国政府将从“政策扶持者”蜕变为“直接股东”,彻底重塑全球...

关键字: 芯片 半导体

- ‘Match Chat' AI助手可在所有254场单打比赛期间及结束后实时回答问题 - 升级版IBM SlamTracker将提供实时获胜概率预测,而‘Key Poin...

关键字: IBM AI PEN AN
关闭