当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]这是我从1月6日开始主持天极网论坛嵌入式开发版以来第一次发表文章,加上以前琐碎的文章共计30篇。研究的越多就越感觉自己懂的太少,其实在驱动开发方面我还是个菜鸟,我是想再次抛砖引玉,让做驱动有N年经验的人奉献一点出来,让大家减少一些研究驱动源码而又缺少注释所带来的痛苦。

文/付林林

这是我从1月6日开始主持天极网论坛嵌入式开发版以来第一次发表文章,加上以前琐碎的文章共计30篇。研究的越多就越感觉自己懂的太少,其实在驱动开发方面我还是个菜鸟,我是想再次抛砖引玉,让做驱动有N年经验的人奉献一点出来,让大家减少一些研究驱动源码而又缺少注释所带来的痛苦。

我想即使读者看过微软的关于驱动开发的培训教材和CE帮助文档中的驱动部分,头脑中仍然一片茫然。要想真正了解驱动程序必须结合一些驱动程序源码,在此我以串口驱动程序(COM16550)中初始化过程为线索简单讲一讲驱动开发的基础知识。

Windows CE下的串口驱动程序能够处理所有I/O行为类似串口的设备,包括基于16450、16550 UART(通用异步收发芯片)的设备和一些采用DMA的设备,常见的有9针串口、红外I/O口、Modem等。在%_WINCEROOT%PublicCommonOAKDriversSerial目录下,COM_MDD2子目录包含新的串口驱动MDD层函数代码。COM16550子目录包含串口驱动PDD层代码。SER16550子目录包含的一系列函数专用于控制与16550兼容的UART,这样PDD层的主要工作就是调用SER16550中的函数。还有一个ISR16550子目录包含的是串口驱动程序专用的可安装ISR(中断服务例程),而很多硬件设备驱动程序采用CE默认的可安装ISR giisr.dll。一般串口设备相应的注册表设置例子及意义如下:


SysIntr由CE在文件Nkintr.h中预定义,用于唯一标识中断设备。OEM可以在文件Oalintr.h中定义自己的SysIntr。常见的预定义SysIntr有SYSINTR_NOP(中断只由ISR处理,IST不再处理),SYSINTR_RESCHED(重新调度线程),SYSINTR_DEVICES(由CE预定义的设备中断ID的基值),SYSINTR_PROFILE、SYSINTR_TIMING、SYSINTR_FIRMWARE等都是基于SYSINTR_DEVICES定义的。IoBase是串口1的IO地址空间的首地址,IoLen是IO空间的大小。IO地址空间只存在于x86平台,如果在其它平台硬件寄存器必须映射到物理地址空间,那子键的名称为MemBase和MemLen。在x86平台更多硬件的寄存器由于IO空间的局限也映射到物理地址空间。DeviceArrayIndex是设备的索引,用于区分同类型的设备。Prefix是流驱动程序的前缀,当应用程序调用CreateFile函数传递COM1:参数时,文件系统负责与串口驱动程序通信,串口驱动程序是在CE启动时由device.exe加载的。

下面从MDD层函数COM_Init开始探索串口驱动的初始化过程。COM_Init是在串口设备被检测后由设备管理器device.exe调用的,主要的作用是初始化设备,它的唯一参数Identifier是由device.exe传递的,其类型是一个字符串指针,字符串的内容是HLMDriversActivexx,xx是一个十进制数(device.exe会跟踪系统中每个驱动程序,把加载的驱动程序记录在Active键下)。

COM_Init先分配一个HW_INDEP_INFO结构体,这个结构体是独立于串口硬件的头信息(MDD、PDD、SER16550都包含自己独特的结构体,具体的结构体定义请参见串口驱动源码),分配之后再初始化结构体中每个成员,初始化结构体后调用 OpenDeviceKey((LPCTSTR)Identifier)打开HLMDriversActivexxKey包含的注册表路径,在这里路径一般为HLMDriversBuiltInSerial,即串口的驱动程序信息在注册表中所处的位置。COM_Init接着在HLMDriversBuiltInSerial下查询DeviceArrayIndex、Priority256的值,Priority256指定了驱动程序的优先级,如果没有就用默认的优先级。接下来调用GetSerialObject(DeviceArrayIndex),这个函数由PDD层定义,返回HWOBJ结构体,这个结构体主要包含PDD层和SER16550定义的函数的指针。



也就是说MDD通过调用这个函数才能调用底层实现的函数。接下来的大多数工作都是调用底层函数实现初始化。第一个调用的底层函数SerInit主要设置由用户设置的硬件配置,例如线路控制、波特率。它调用Ser_GetRegistryData函数得到保存在注册表中的硬件信息,Ser_GetRegistryData在内部调用系统提供的DDKReg_GetIsrInfoDDK和DDKReg_GetWindowInfo函数得到在HLMDriversBuiltInSerial下保存的IRQ、SysIntr、IsrDll、IsrHandler、IoBase、IoLen。IRQ是逻辑中断号,IsrDll表示当前驱动程序的可安装ISR所在的DLL名称,IsrHandler 表示可安装ISR的函数名称。

在这里顺便提一下可安装ISR,读者在我以前发表的关于OAL的文章中可以了解到OEM在OEMInit函数中关联IRQ和SysIntr,当硬件设备发生中断时,ISR会禁止同级和低级中断,然后根据IRQ返回关联的SysIntr,内核根据ISR返回的SysIntr唤醒相应的IST(SysIntr与IST创建的Event关联),IST处理中断之后调用InterruptDone解除中断禁止。在OEMInit中关联的缺点是一旦编译了CE内核后就无法添加这种关联了,而一些硬件设备会随时插拔或者共享中断,要关联这样的硬件设备解决方法就是可安装ISR,可安装ISR专用于处理指定的硬件设备发出的中断,所以如果硬件设备需要可安装ISR必须在注册表中添加IsrDll、IsrHandler。多数硬件设备采用CE默认的可安装ISR giisr.dll,格式如下:

"IsrDll"="giisr.dll"

"IsrHandler"="ISRHandler"


如果一个硬件驱动程序需要可安装ISR而开发者又不想自己写一个,那么可以利用giisr.dll来实现。除了在注册表中添加如上所示外,还要在驱动程序中调用相关函数注册可安装ISR。伪代码如下:

g_IsrHandle = LoadIntChainHandler(IsrDll, IsrHandler, (BYTE)Irq);

GIISR_INFO Info;

PHYSICAL_ADDRESS PortAddress = {PhysAddr, 0};

TransBusAddrToStatic(BusType, dwBusNumber, PortAddress, dwAddrLen, &dwIOSpace, &(PVOID)PhysAddr)

Info.SysIntr = dwSysIntr;

Info.CheckPort = TRUE;

Info.PortIsIO = (dwIOSpace) ? TRUE : FALSE;

Info.UseMaskReg = TRUE;

Info.PortAddr = PhysAddr + 0x0C;

Info.PortSize = sizeof(DWORD);

Info.MaskAddr = PhysAddr + 0x10;

KernelLibIoControl(g_IsrHandle, IOCTL_GIISR_INFO, &Info, sizeof(Info), NULL, 0, NULL);


LoadIntChainHandler函数负责注册可安装ISR,参数1为DLL名称,参数2为ISR函数名称,参数3为IRQ。TransBusAddrToStatic函数在后面讲。如果要利用giisr.dll作为可安装ISR,必须先填充GIISR_INFO结构体,CheckPort=TRUE表示giisr要检测指定的寄存器来确定当前发出中断的是否是这个设备。PortIsIO表示寄存器地址属于哪个地址空间,FALSE表示是内定空间,TRUE表示IO空间。UseMaskReg=TRUE表示设备有一个掩码寄存器,专用于指定当前设备是否是中断源,也就是发出中断,而MaskAddr表示掩码寄存器的地址。如果对Info.Mask赋值,那么PortAddr表示一个特殊的寄存器地址,这个寄存器的值与Mask的值&运算的结果如果为真,则证明当前设备是中断源,否则返回SYSINTR_CHAIN(表示当前ISR没有处理中断,内核将调用ISR链中下一个ISR),如果UseMaskReg=TRUE,那么MaskReg寄存器的值与PortAddr指定的寄存器的值&运算的结果如果为真,则证明当前设备是中断源。

函数SerInit接着调用函数Ser_InternalMapRegisterAddresses转换IO地址并且映射地址,Ser_InternalMapRegisterAddresses在内部调用系统提供的HalTranslateBusAddress(Isa, 0, ioPhysicalBase, &inIoSpace, &ioPhysicalBase)函数将与总线相关的地址转换为系统地址,参数1为总线类型,参数2为总线号,参数3为要转换的地址(PHYSICAL_ADDRESS类型,实际是LARGE_INTEGER型),参数4指定寄存器地址属于IO地址空间还是物理地址空间,参数5返回转换后的物理地址。观察HalTranslateBusAddress的源码得知如果是在x86平台,这个函数除了把参数3赋给了参数5其余什么都没有做,而非x86平台将inIoSpace的值置为0,表示一定是物理地址。在调用HalTranslateBusAddress前要确定从注册表中得到的寄存器地址到底是属于哪个地址空间的,例如:

ULONG inIoSpace = 1; ///1表示是IO空间

PHYSICAL_ADDRESS ioPhysicalBase = {iobase, 0}; ///相当于ioPhysicalBase.LowPart = iobase


在地址转换后就要将转换后的地址映射到驱动程序(一般IST和应用程序一样运行在用户模式)能够访问的虚拟地址空间(0x80000000以下)和ISR能够访问的静态虚拟地址空间中(0x80000000以上)。例如:

////如果地址属于物理地址空间

ioPortBase = (PUCHAR)MmMapIoSpace(ioPhysicalBase, Size, FALSE);
TransBusAddrToStatic(Isa, 0, ioPhysicalBase, Size, &inIoSpace, ppStaticAddress);


MmMapIoSpace函数负责将物理地址映射到驱动程序能够访问的虚拟地址空间中,通过源码分析MmMapIoSpace在内部分别调用:

pVirtualAddress =VirtualAlloc(0, SourceSize, MEM_RESERVE, PAGE_NOACCESS);

VirtualCopy(pVirtualAddress, (PVOID)(SourcePhys >> 8), SourceSize, PAGE_PHYSICAL | PAGE_READWRITE |
(CacheEnable ? 0 : PAGE_NOCACHE));


VirtualAlloc分配一块和MemLen一样大小的虚拟地址空间,因为参数1为0,所以内核自动分配。一般MemLen小于2MB,所以会在应用程序的地址空间中分配。VirtualCopy负责将硬件设备寄存器的物理地址与VirtualAlloc分配的虚拟地址做一个映射关系,这样驱动程序访问PvirtualAddress实际上就是访问第一个寄存器。因为硬件设备寄存器的物理地址一定是在512MB(CE支持RAM的最大值)以上,所以除了最后的参数要加PAGE_PHYSICAL外,第二个参数物理地址也要右移8位(或者除以256)。
 映射硬件寄存器当然PAGE_NOCACHE是必须加的。TransBusAddrToStatic函数负责将物理地址映射到ISR能够访问的静态虚拟地址空间中,当出现中断共享时,ISR要负责访问硬件设备的某一个寄存器来判断中断源,所以将寄存器的物理地址映射到静态虚拟地址空间中是必要的(ISR只能访问静态的虚拟地址空间)。所谓静态虚拟地址空间是指在OEMAddressTable中定义的虚拟地址空间(当然是0x80000000以上)。在x86平台一般这个表只定义RAM的物理地址与虚拟地址对应关系,而硬件设备的寄存器地址并不在该表中定义,所以如果要创建一块静态的虚拟地址空间供ISR访问,必须在此之前调用CreateStaticMapping函数在0xC4000000到0xE0000000虚拟地址空间中分配。TransBusAddrToStatic函数在内部就是调用了CreateStaticMapping函数。注:硬件设备的寄存器地址也可以在OEMAddressTable中定义。

////如果地址属于IO空间

ioPortBase = (PUCHAR)ioPhysicalBase.LowPart;
*ppStaticAddress=ioPortBase


这种情况只属于x86平台,是IO空间就可以直接访问,即使是用户模式。

SerInit函数接着初始化SER_INFO结构体成员,之后调用SL_Init函数,这个函数在ser16550中定义,负责初始化SER16550_INFO结构体,在这个结构体中保存串口8个寄存器的地址。SerInit函数执行完毕后COM_Init函数创建接收缓冲区,然后调用StartDispatchThread函数初始化中断并且创建IST。StartDispatchThread函数在内部调用InterruptInitialize函数关联SysIntr和Event,然后调用InterruptDone函数告诉内核当前串口可以中断处理,接着调用CreateThread函数创建IST线程。(over吧,再往下说就和串口硬件有关了,看多了没注释的代码我也烦!!)


[HKEY_LOCAL_MACHINEDriversBuiltInSerial_1]

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

好用、高效的多合一传感器开发工具,支持给新一代高科技 MEMS 传感器产品开发应用软件

关键字: 传感器 Windows MacOS

双系统将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对双系统的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 双系统 Windows Linux

今天,小编将在这篇文章中为大家带来Windows 11系统的有关报道,通过阅读这篇文章,大家可以对Windows 11系统具备清晰的认识,主要内容如下。

关键字: Windows 操作系统

(全球TMT2023年9月8日讯)亚马逊云科技日前在一年一度的存储服务创新日上宣布推出诸多亚马逊云科技存储服务的新功能,其中重点包括为支持人工智能/机器学习、大数据分析等数据密集型工作负载进一步提升Amazon Ela...

关键字: 亚马逊 FOR IC Windows

此芯科技自去年加入Linaro Windows on Arm工作组之后,发起成立了Client PC合作项目,旨在推动基于UEFI + ACPI标准的Arm PC启动架构标准化,通过统一的系统固件支持Windows和Li...

关键字: Arm PC生态 Windows Linux操作系统

北京2023年3月13日 /美通社/ -- 近日,亚马逊云科技宣布针对其广泛的存储服务推出诸多可帮助客户进一步优化成本的新功能,功能更新涵盖Amazon Simple Storage Service(Amazo...

关键字: 亚马逊 STORAGE LM Windows

量子计算领域的新里程碑,来了! 谷歌科学家证明,通过增加量子比特的数量,就能降低量子计算的错误率。

关键字: 谷歌 Android Windows

QVM人工智能引擎是Qihoo Support Vector Machine(奇虎支持向量机)的缩写。是360完全自主研发的第三代引擎(具有中国的自主知识产权的引擎)。

关键字: 微软 Windows 系统

据业内信息报道,近日微软公司正式结束了对于Windows7操作系统的付费外延扩展支持,未来也不再为Windows7提供安全更新。

关键字: 微软 Windows 操作系统

开源开放的RISC-V已经成为仅次于ARM、x86的第三大CPU指令集,也受到了各大芯片厂商的重视,然而要想进入主流市场,还需要一些突破,其中谷歌安卓系统的支持至关重要,好消息是谷歌已经表态支持RSIC-V架构,并且重视...

关键字: 谷歌 Android Windows
关闭
关闭