当前位置:首页 > 电源 > 电源-能源动力
[导读]摘要空间矢量脉宽调制(SVPWM)广泛用于3相逆变器控制系统。SVPWM MCU实现的最有效方法是中心对齐PWM,因为MCU中的PWM模块可轻松产生中心对齐PWM。本文将讨论SVPWM实现方法,

摘要

空间矢量脉宽调制(SVPWM)广泛用于3相逆变器控制系统。SVPWM MCU实现的最有效方法是中心对齐PWM,因为MCU中的PWM模块可轻松产生中心对齐PWM。本文将讨论SVPWM实现方法,并介绍一种轻松实现中心对齐SVPWM的方法,其适合于片上PWM模块。

1 引言

SVPWM广泛用于3相逆变器控制系统,原因是它比正弦脉宽调制(SPWM)拥有更高的DC侧电压利用效率。尽管SVPWM具有许多优势,但是它难以实现。最难的因素是计算每个功率开关的占空比,以及确定每个开关周期的矢量扇区和脉冲序列。许多文章都介绍了3相2级逆变器的占空比计算方法,并且我们可以使用许多方法来计算出矢量序列(例如,中心对齐方法,它可以在MCU平台中轻松地实现)。

为了改善3相逆变器的系统效率,3级或者多级逆变器正变得越来越流行。相比2级逆变器,3级逆变器拥有更多的功率开关(最多可达12个);这就意味着,3级逆变器比2级逆变器拥有更多的矢量扇区。因此,相比2级逆变器,3级逆变器SVPWM的占空比计算和矢量计算更加复杂。

本文[1]介绍了一种计算矢量扇区的简单方法。计算过程总共只有2步,第1步把整个矢量分为6个主要扇区。这一步与2级逆变器的扇区计算方法非常类似。第2步,把基准扇区重新定位至这6个扇区之一中,然后把这个主扇区分为6个子扇区。这种计算方法可用于2级逆变器,用于确定有效矢量和计算其停顿时间。但是,我们还没有讨论每个开关周期的矢量序列,并且占空比计算方法很难在MCU应用中实现。本文[2]把相同方法用于计算矢量。重新定位的零矢量作为2级逆变器的零矢量,则得到的矢量序列与2级逆变器一样。在实现过程中,MCU用于产生序列信号,并把外围逻辑电路用于每个功率开关的已实现PWM生成。我们并未介绍没有外围逻辑电路且适合于MCU实现的方法。

SVPWM MCU实现的最有效方法是中心对齐PWM,因为MCU的PWM模块可轻松地产生中心对齐PWM。本文将基于[1]和[2]所述方法,讨论SVPWM实现,并介绍实现中心对齐SVPWM的一种简单方法,其适合于片上PWM模块。

2 3相3级逆变器的基本SVPWM原理

图1显示了中点箝位(NPC)型3相3级逆变器的硬件拓扑。

图1 NPC 3相3级逆变器的硬件拓扑

图1中,共有3个NPC腿(R、S和T);每个腿包括4个功率开关。每个腿的4个功率开关必须在两个补偿对中得到控制。Qx1、Qx3(x = R,S,T)为一个补偿对,Qx2、Qx4为另一对。因此,对于每个腿而言,它可通过4个功率开关输出3个不同相位的电压状态。

表1 每个腿的输出状态

当控制每个腿的功率开关(参见表1)时共有27个状态;每个状态均可映射到α- β坐标平面矢量图。27个矢量可形成18个扇区,如图2所示。

图2 3相3级逆变器SVPWM矢量图[!--empirenews.page--]

假设基准矢量Vref。根据SVPWM理论,我们必须在图2中找出两个最接近的矢量Vx、Vy以及一个零矢量Vz,以组成矢量Vref。图2显示了Vref和Vx、Vy、Vz之间的关系。因此,我们可以选择矢量PNN(Vx)、PNN(Vy)和NNN(Vz),形成Vref。如果规定间隔Ts内Vx、Vy、Vz的停顿时间分别为Tx、Ty、Tz,则可得到如下函数:

但是,仅仅通过2级SVPWM中使用的角度还很难确定Vx、Vy、Vz,因为即使角度相同,但基准矢量可位于不同扇区内。为了确定该扇区,需要基准矢量的大小,但它会增加计算方法的复杂度。

[1]和[2]介绍了一种计算Vx、Vy、Vz的简单方法。首先,图2所示整个矢量图被分为6个主扇区。每个主扇区包含10个原始扇区,其会形成一个子六边形。这6个主扇区呈60度角差连续分布。图3显示了这6个主扇区。

图3 3级SVPWM的主扇区

给定基准矢量Vref情况下,可仅利用该角度计算主扇区。例如,图4中,Vref和α轴之间角度θ为+60度到-60度,其意味着Vref主扇区为扇区1。

图4 主扇区1

在计算出主扇区以后,它必须把初始矢量映射到所选主扇区内。映射算法如下:

例如,主扇区1的初始矢量为PPP(OOO,NNN)、POP(NON)、PNO、PNN、PON、PPO(OON)、POO(ONN)。为了获得类似于2级SVPWM的六边形,把POO(ONN)作为映射矢量Vmap1=V0。在映射以后,我们可得到图5所示六边形,其与2级SVPWM的矢量图一样。在该六边形中,共有7个映射矢量,其在六边形中形成6个子扇区。

图5 主扇区1映射

 

表2 每个主扇区的映射矢量

3 主扇区计算简单方法

利用α- β坐标平面Vref角度,可计算出该主扇区。如图2和图3所示,每个主扇区均位于固定角度范围内。例如,第一个主扇区的角度范围为 。还可以计算第二个主扇区的角度范围,其为 。因此,第一个和第二个主扇区之间的重叠区域,会延伸到两个相邻区域。这些重叠区域增加了主扇区的计算难度。为了规定每个扇区的独占角度区域,我们可重新定义主扇区,如图6所示。[!--empirenews.page--]

图6 主扇区新定义

利用图6所示定义,每个主扇区都有其自己的角度区域及其自己的子扇区。

鉴于图7所示3相电压波形,相应主扇区被标记在正确位置。由图7,表3总结了主扇区编号与3个相位元素之间的关系,其可帮助轻松确定主扇区。

图7 主扇区位置

表3 主扇区确定方法

4 子扇区过程

在2级SVPWM中,第1步是找出可确定停顿矢量的扇区编号。第2步是,计算每个所选矢量的停顿时间。根据第1章中3级SVPWM原则,当确定主扇区且所有矢量均映射到主扇区时,可使用与2级SVPWM相同的过程来确定子扇区,并计算每个停顿矢量的停顿时间。这种过程算法在许多文章中都有介绍,因此本文将不再讨论子扇区确定方法和停顿时间计算方法。

尽管我们可以通过子扇区方法找出每个矢量的停顿时间,但是每个功率开关的占空比分布比2级SVPWM要复杂得多。3级SVPWM拥有6对补偿功率开关,其意味着,当我们得到所选矢量的停顿时间时,必须计算出6个占空值。为了简化占空比计算过程,本文介绍一种有效的方法,用于轻松地计算每对功率开关的占空比。

我们同样以主扇区1作为例子。根据图4,R相位没有N状态。除此以外,如果选择OON、ONO和OOO,用于矢量映射,则S和T相位没有P状态。就R相位而言,用1代替P状态,并用0代替O状态。就S和T相位而言,用1代替O状态,用0代替N状态。结果是,与2级SVPWM相同的矢量图。图8显示了这种操作过程。

图8 状态代替

在完成2级SVPWM过程以后,可知道3个矢量的停顿。如图8所示,Tx为100停顿时间,Ty为110停顿时间,而Tz为111和000停顿时间。因此,我们可以利用中心对齐PWM输出模式,计算出3对补偿功率开关的3个占空比(d1、d2和d3);本例所得矢量序列为000→100→110→111→110→100→000。图9左边显示了2级SVPWM中3对补偿功率开关上级开关的状态,其被称作中心对齐SVPWM。

图9 2级逆变器中心对齐SVPWM

如果我们用P和N分别代替1和0,则我们可得到3级逆变器中心对齐SVPWM的右边部分。3级SVPWM的矢量序列为:

ONN→PNN→PON→POO→PON→PNN→ONN。

正功率开关对为Qx1和Qx3(x=R、S、T);负功率开关对为Qx4和Qx2(x = R、S、T)。我们对每对状态0和1的定义也与2级SVPWM相同。因此,对于主扇区1而言,在单开关周期内,负R相位对始终为0,对于S、T相位而言,正对始终为0。那么,仅3对功率开关必须通过不同的占空比、正R相位对和负S、T相位对控制,其相当于2级SVPWM的3对功率开关。这意味着,在主扇区1中,d1可分配给正R相位对,d2可分配给负S相位对,而d3可分配给负T相位对。[!--empirenews.page--]

前面分析结果可扩展至其它矢量。表4总结了状态代替,表5列举了每个主扇区的占空比分配情况。

表4 每个主扇区的状态代替

表5 每个主扇区的占空比分配

5 算法实施

由第4小节的分析,我们可实现3级SVPWM算法。图10显示了该软件流程图。

图10 3级SVPWM算法流程图

图10中,所有函数输入均为基准矢量的αβ元素。

RevParkConv为Park反向转换的函数,由此,我们可以得到3个相位静态元素。

MainSectorCal为通过表3所列结果确定主扇区编号的函数。

MapVector为映射基准矢量至所选主扇区的函数。表2列出了映射矢量αβ元素。

Svgen_dq_2_Level为实现2级SVPWM过程的函数,由此,我们可知道三个占空比d1、d2和d3。

DutyAssign为通过表5所列结果为功率开关对分配CMPR值的函数。

6 仿真结果

为了测试第5章所讨论算法的有效性,我们使用Matlab Simulink Platform得到仿真结果。所有算法均通过C代码s函数完成,其可轻松移植至现实系统。

仿真条件如下:

l 三相三级NPC桥

l 开关频率:10kHz、PWM周期计数:3000

l DC侧电压:700V

l 基准相到相电压:(1)200 V/50 Hz;(2)280 V/50 Hz

l LC滤波器参数:每个相位,L=9mH,C=4.7μf

l R负载:每个相位100Ω

l 无停滞时间

图11仿真结果

(CH1:基准电压;CH2:输出电压;CH3:主扇区计算;CH4:子扇区计算)

图12 仿真结果

(CH1:正QR1 PWM;CH2:负QS2 PWM;CH3:负QT2 PWM;CH4:主扇区)

图13 220Vac输出CMPR值

CH1:R相位正(蓝色)和负(绿色)的CMPR值

CH2:S相位正(蓝色)和负(绿色)的CMPR值

[!--empirenews.page--]

CH3:T相位正(蓝色)和负(绿色)的CMPR值

CH4:主扇区

图14 280Vac输出CMPR值

CH1:R相位正(蓝色)和负(绿色)的CMPR值

CH2:S相位正(蓝色)和负(绿色)的CMPR值

CH3:T相位正(蓝色)和负(绿色)的CMPR值

CH4:主扇区

由图11-图14所示仿真结果,经证明,该算法是正确的。这种算法可用于实现3级3相逆变器SVPWM。但是,由于没有考虑到停滞时间和DC侧电压失衡所产生的影响,因此要求做进一步的研究。所以,我们必须特别注意这种方法的局限性。

参考文献

1、《同步与对称波形三级VSI改进SVPWM算法》,作者:Abdul RahimanBeig,IEEE会员G.NaraYanan、G.NaraYanan和IEEE资深会员V.T.Ranganathan。

2、《三级逆变器新型简易空间矢量PWM方法》,作者:IEEE会员Jae HyeongSeo、Chang Ho Choi和IEEE资深会员Dong Seok Hyun。

3、《单相三级NPC逆变器新型SVPWM方法与中点电压平衡控制法》。

4、中国广东省广州市(510640)中国南方科技大学Zhang Zhi、Xie Yun- xiang、Huang Wei – ping、Le Jiang – yuan和Chen Lin。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

电平逆变器的应用推荐低压MOS系列,产品稳定,性能可靠,满足恶劣环境工况下使用

关键字: 功率器件 多电平逆变器 逆变器 低压MOS

逆变器是把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电(一般为220V,50Hz正弦波)的转换器。它由逆变桥、控制逻辑和滤波电路组成。

关键字: 电警棒 逆变器 电池

随着电力行业的不断发展和进步,为了符合节能减排的社会发展趋势,发电系统逐渐采用可再生的新能源发电代替传统的发电模式。

关键字: 太阳能 逆变器 电力

光伏逆变器作为光伏发电系统的重要组成部分,跟一般逆变器的区别体现在其具备最大功率点跟踪(MPPT)功能与针对电网安全的低电压穿越能力。

关键字: 光伏 逆变器 低电压穿越

集中式逆变器是一种将多个太阳能电池板的电能转化为交流电的装置。通常安装在电站的中央,由多个电池板串联成一个直流电池组,再由集中式逆变器将直流电转化为交流电。

关键字: 集中式 组串式 逆变器

在电力电子与电气工程领域,逆变器和变压器都是不可或缺的重要设备。尽管它们都在电力转换和传输过程中发挥着关键作用,但它们在功能、工作原理和应用场景等方面存在着显著的差异。本文将从科技视角出发,对逆变器和变压器的区别进行深度...

关键字: 逆变器 变压器

随着可再生能源技术的不断发展和应用,逆变器作为能源转换和储存的核心设备,其在电力系统中的作用日益凸显。根据储能类型的不同,逆变器可以分为电化学储能逆变器和机械储能逆变器两大类。这两类逆变器在结构、原理和应用场景等方面存在...

关键字: 逆变器 可再生能源

随着全球能源结构的深刻变革,可再生能源的推广和应用已成为当今世界的发展趋势。在这一大背景下,逆变器作为连接可再生能源发电设备和电网的关键设备,其重要性日益凸显。本文旨在探讨逆变器的发展背景,分析当前市场现状,并展望其未来...

关键字: 逆变器 可再生能源

太阳能光伏发电作为一种清洁、高效的能源形式,正受到越来越多的关注和应用。在太阳能光伏发电系统中,逆变器和电池是两大核心组件,其性能直接影响到整个系统的运行效率和稳定性。本文将围绕太阳能光伏发电如何选用逆变器及电池进行深入...

关键字: 太阳能光伏 逆变器

确保逆变器的额定功率能满足负载设备的功率需求。避免过载使用,以免损坏设备。保持良好的通风。避免在高温、潮湿环境下使用,以免影响设备散热和性能。

关键字: 逆变器 额定功率 充电
关闭
关闭