当前位置:首页 > 物联网 > 网络层
[导读]企业和云级网络的数据中心中各种“G”比比皆是,是时候搞清楚他们的性能了。

 企业和云级网络的数据中心中各种“G”比比皆是,是时候搞清楚他们的性能了。

云计算的兴起和数据中心的扩展推动着最新的以太网速度升级,而基于云技术的大数据也已然增加了运营商的工作负载。为满足这一需求,数据中心通过增加与现有基础设施并行的带宽能力实现扩展。预期中25G和100G以太网部署的快速增长就是这一趋势的明证。

为了能够处理不断增大的数据负载,业界最大规模的远距离云企业已纷纷与他们核心网络的数据中心运营商一起,共同转向使用 100G 以太网架构。不过大多数运营商认为,对服务器连接来说,100G甚至是 40G都有些过度,因为其工作负载仅需要在10G网络上逐步改进就够了。这就是虽然已经推出了40G 和100G 以太网,25G 和 50G 以太网仍然是数据中心内部常见选择的原因之一。下面我们将简要介绍为什么 25G 比 40G 更适合这些应用。

几种最新以太网带宽技术的形成并不是为了要创下速度新高,更多是为了将这种网络协议推入邻近的市场,尤其是数据中心市场。下面我们将通过分别介绍 25G、50G 和 100G 来了解具体原因。

      25G

官方制定的面向25G 以太网的IEEE 802.3草案标准最终会在2016 年完成(见图 1),其主要面向云数据中心的服务器。由于可重复使用 10G和 100G 以太网的组件,这是一个相对较短的时间框架。

40G和100G已然存在,但为什么还要使用25G?这令部分运营商迷惑不解。答案其实就在于架构与性能方面的要求。现有的100G标准网络系统由四条链路组成,每个通道的带宽均是25Gbps。这种四比一的比率相当于将服务器连接至 25G 交换机,然后汇聚成100G的上行链路,从而有助于网络运营商更便捷地扩建其数据中心。

同样,40G 以太网是由 4 个 10G 以太网的链路组成的。但据以太网联盟 (Ethernet Alliance) 主席 John D’Ambrosia 所言,众多数据中心均已采用 10G 以上的服务器。这就是为什么多家芯片厂商已提供 25G 串行/解串收发器的原因所在。这不仅可以让 25G、50G 和 100G 以太网的带宽汇聚更加方便,而且还能因批量而降低成本。

       50G

虽然距离 50G 以太网 的IEEE 标准落实还有一段时间(大约为2018 年至 2020 年),但多家行业联盟都预计 2016 年就会有产品开始出现。与 25G 技术类似,50G 以太网技术将成为下一个高速连接服务器与数据中心的解决方案。根据分析公司 Dell’Oro 的数据显示,今后几年,服务器和高性能闪存存储系统将会需要超过 25G 的速度。

为有助于更快地提供这些加速的以太网技术的产品,25G/50G 以太网联盟已经免除了25G 及50G 以太网规范的专利费,并面向所有数据中心生态系统厂商开放。

重复使用现有100G网络的25G组件可降低50G的实施成本。例如25G布线的成本结构与10G相同,性能却是其2.5倍。同样,50G的成本是40G成本的一半,性能却能够提升 25%。

      100G

对于距离数百公里到数万公里不等的远距离运营商网络而言,100G以太网的部署将继续增长。

但根据一家最新行业联盟提供的信息,100G架构还将成为另一个极佳的市场备选方案。英特尔和 Arista Network 联合牵头的 100G CLR4 联盟认为,100G 非常适合连接 100 米到 2 公里跨度的大型“超大规模”数据中心。

其他公司也正在寻求用于数据中心的备选 100G 实施方案。Avago Technologies 已加入 CWDM4 MSA行业联盟,后者旨在为数据中心应用中2公里内的低成本 100G光接口定义一个通用的规范。随着网络基础设施构建向 100G 数据速率转型,数据中心将需要长距离高密度100G嵌入式光连接。MSA使用粗波分复用(CWDM)技术提供 4 个 25G单模光纤(SMF)链路通道。同样,Ranovus和Mellanox Technologies发起的OpenOptics MSA 组织也将集中精力开发支持 2公里 100G 的数据中心。

过去,是速度的提升推动了大多数网络组件的开发。如今,要处理海量的通过云的数据流,需要各公司在提升速度和重复使用技术之间来寻求一个平衡,从而找到一个成本合理的解决方案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭