当前位置:首页 > 单片机 > 单片机
[导读]对 51 单片机内存的认识,很多人有误解,最常见的是以下两种:① 超过变量128后必须使用compact模式编译实际的情况是只要内存占用量不超过 256.0 就可以用 small 模式编译② 128以上的某些地址为特殊寄存器使用,不能

对 51 单片机内存的认识,很多人有误解,最常见的是以下两种:

① 超过变量128后必须使用compact模式编译

实际的情况是只要内存占用量不超过 256.0 就可以用 small 模式编译

② 128以上的某些地址为特殊寄存器使用,不能给程序用

与 PC 机不同,51 单片机不使用线性编址,特殊寄存器与 RAM 使用重复的重复的地址。但访问时采用不同的指令,所以并不会占用 RAM 空间。

由于内存比较小,一般要进行内存优化,尽量提高内存的使用效率。

以 Keil C 编译器为例,small 模式下未指存储类型的变量默认为data型,即直接寻址,只能访问低 128 个字节,但这 128 个字节也不是全为我们的程序所用,寄存器 R0-R7必须映射到低RAM,要占去 8 个字节,如果使用寄存组切换,占用的更多。

所以可以使用 data 区最大为 120 字节,超出 120 个字节则必须用 idata 显式的指定为间接寻址,另外堆栈至少要占用一个字节,所以极限情况下可以定义的变量可占 247 个字节。当然,实际应用中堆栈为一个字节肯定是不够用的,但如果嵌套调用层数不深,有十几个字节也够有了。

为了验上面的观点,写了个例子

#define LEN 120

data UCHAR tt1[LEN];

idata UCHAR tt2[127];

void main()

{

UCHAR i,j;

for(i = 0; i < LEN; ++i )

{

j = i;

tt1[j] = 0x55;

}

}

可以计算 R0-7(8) + tt1(120) + tt2(127) + SP(1) 总共 256 个字节

keil 编译的结果如下:

Program Size: data=256.0 xdata=0 code=30

creating hex file from "./Debug/Test"...

"./Debug/Test" - 0 Error(s), 0 Warning(s).

(测试环境为 XP + Keil C 7.5)

这段代码已经达到了内存分配的极限,再定义任何全局变量或将数组加大,编译都会报错 107

这里要引出一个问题:为什么变量 i、j 不计算在内?

这是因为 i、j 是局部变量,编译器会试着将其优化到寄存器 Rx 或栈。问题也就在这了,如果局部变量过多或定义了局部数组,编译器无法将其优化,就必须使用 RAM 空间,虽然全局变量的分配经过精心计算没有超出使用范围,仍会产生内存溢出的错误!

而编译器是否能成功的优化变量是根据代码来的

上面的代码中,循环是臃肿的,变量 j 完全不必要,那么将代码改成

UCHAR i;

UCHAR j;

for(i = 0; i < LEN; ++i )

{

tt1[i] = 0x55;

}

再编译看看,出错了吧!

因为编译器不知道该如何使用 j,所以没能优化,j 须占 RAM 空间,RAM 就溢出了。

(智能一点的编译器会自动将这个无用的变量去掉,但这个不在讨论之列了)

另外,对 idata 的定义的变量最好放在 data 变量之后

对于这一种定义

uchar c1;

idata uchar c2;

uchar c3;

变量 c2 肯定会以间接寻址,但它有可能落在 data 区域,就浪费了一个可直接寻址的空间

变量优化一般要注意几点:

①让尽可能多的变量使用直接寻址,提高速度

假如有两个单字节的变量,一个长119的字符型数组

因为总长超过 120 字节,不可能都定义在 data 区

按这条原则,定义的方式如下:

data UCHAR tab[119];

data UCAHR c1;

idata UCHaR c2;

但也不是绝的,如果 c1, c2 需要以极高的频率访问,而 tab 访问不那么频繁

则应该让访问量大的变量使用直接寻址:

data UCAHR c1;

data UCHaR c2;

idata UCHAR tab[119];

这个是要根据具体项目需求来确定的

②提高内存的重复利用率

就是尽可能的利用局部变量,局部变量还有个好处是访问速度比较快

由前面的例子可以看出,局部变量 i, j 是没有单独占用内存的

子程序中使用内存数目不大的变量尽量定义为局部变量

③对于指针数组的定义,尽可能指明存储类型

尽量使用无符号类型变量

一般指针需要一个字节额外的字节指明存储类型

8051 系列本身不支持符号数,需要外加库来处理符号数,一是大大降低程序运行效率,二是需要额外的内存

④避免出现内存空洞

可以通过查看编译器输出符号表文件(.M51)查看

对前面的代码,M51文件中关于内存一节如下:

* * * * * * * D A T A M E M O R Y * * * * * * *

REG 0000H 0008H ABSOLUTE "REG BANK 0"

DATA 0008H 0078H UNIT ?DT?TEST

IDATA 0080H 007FH UNIT ?ID?TEST

IDATA 00FFH 0001H UNIT ?STACK

第一行显示寄存器组0从地址0000H开始,占用0008H个字节

第二行显示DATA区变量从0008H开始,占用0078H个字节

第三行显示IDATA区变量从0080H开始,占用007F个字节

第四行显示堆栈从00FFH开始,占0001H个字节

由于前面代码中变量定义比较简单,且连续用完了所有空间,所以这里显示比较简单

变量定义较多时,这里会有很多行

如果全局变量与局部变量分配不合理,就有可能出现类似下面的行

0010H 0012H *** GAP ***

该行表示从0010H开始连续0012H个字节未充分利用或根本未用到

出现这种情况最常见的原因是局变量太多、多个子程序中的局部变量数目差异太大、使用了寄存器切换但未充分利用。

扩展阅读:EEPROM的几种保护方法

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在C语言编程中,结构体内存对齐是一个容易被忽视却影响深远的关键问题。它不仅关乎程序性能,更直接影响到内存占用效率,尤其在嵌入式系统等资源受限环境中显得尤为重要。本文将深入探讨结构体内存对齐的原理,并分享手动调整与编译器优...

关键字: C语言 内存对齐 编译器

编译器不仅是连接硬件与软件的桥梁,还直接影响MCU的性能优化与功能安全。面对汽车行业对高可靠性、低功耗和高算力的需求,编译器需在确保ASIL-D等严格标准的同时,最大化发挥RISC-V芯片的潜力。

关键字: 车规MCU RISC-V 编译器 HighTec

国内电子信息产业内的厂商正在全球嵌入式系统的发展浪潮中扮演着越来越重要的角色,但随之而来的是国内嵌入式系统和相关芯片企业在出海时也面临越来越多的合规要求,尤其是在保障用户、设备和周边人与物安全的功能安全领域内的合规要求。...

关键字: 嵌入式系统 智能网联 编译器

采用51单片机最小开发板,由8位自制独立按键控制。单片机芯片为STC89C52RC,晶振为@12.000 mhz。8X8LED点阵屏模块由MAX7219驱动,MAX7219包含一个自动扫描电路。你只需要把要显示的数据发送...

关键字: 51单片机 MAX7219 寄存器

【2025年4月11日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出用于AURIX™、TRAVEO™和PSOC™的可扩展软件包产品组合...

关键字: PSOC 物联网 编译器

瑞典乌普萨拉,2025年3月11日 — 全球领先的嵌入式系统开发软件解决方案供应商IAR在德国纽伦堡举办的embedded world 2025展会上重磅发布全新云端平台。该平台为嵌入式软件开发人员提供前所未有的自由度与...

关键字: 编译器 嵌入式 RISC-V

该统一解决方案为Microchip编译器产品线提供灵活且经济高效的许可选项

关键字: 编译器 嵌入式

当安全标准相互契合:意法半导体 (ST) Stellar MCU取得了风险管理安全标准等级最高的ISO 26262 ASIL D 级认证,现在更有达到同等安全级别的 HighTec Rust 编译器的加持

关键字: 微控制器 编译器

在嵌入式系统的开发中,内存资源的有限性常常成为设计者和开发者面临的主要挑战。特别是在那些对成本、功耗和尺寸有着严格要求的应用中,如何在有限的内存空间内实现高效、可靠的代码运行,成为了嵌入式系统开发中的核心问题。本文将深入...

关键字: 嵌入式系统 内存优化

在嵌入式系统开发的广阔领域,51单片机和STM32无疑是两种极具代表性的微控制器。对于初学者而言,选择学习路径时往往会面临一个抉择:是直接跨越51单片机,挑战更高层次的STM32,还是从51开始,逐步进阶?本文旨在探讨直...

关键字: 51单片机 STM32
关闭