当前位置:首页 > 智能硬件 > 智能硬件
[导读]目前全球人工智能市场仍呈现加速增长态势,主力厂商着重抢先布局人工智能产业生态链。伴随人工智能技术进入相对成熟阶段,智能终端产品销量稳定增加,促进人工智能市场发展。2018年,全球人工智能市场规模达到2636.7亿美元,同比增长17.7%。

目前全球人工智能市场仍呈现加速增长态势,主力厂商着重抢先布局人工智能产业生态链。伴随人工智能技术进入相对成熟阶段,智能终端产品销量稳定增加,促进人工智能市场发展。2018年,全球人工智能市场规模达到2636.7亿美元,同比增长17.7%。

在接下来的几年里,芯片制造商巨头和资金雄厚的创业公司将瓜分专业AI芯片的市场份额。

在计算密集型的人工智能领域,硬件供应商正在以摩尔定律高峰期的性能提升速度不断推陈出新。这种提升来自于针对深度学习等人工智能应用的新一代专用芯片。但是,人工智能芯片市场正在出现的支离破碎化将让开发商面临一些艰难抉择。

将芯片专门针对人工智能应用而定制的新时代始于最初为游戏应用开发的图形处理单元被部署用于深度学习等应用。让GPU渲染逼真图像的同一个架构可以比中央处理单元(CPU)更为有效地处理矢量数据。2007年,英伟达发布了CUDA,这是一个支持GPU以通用方式编程的工具包,这是GPU发展过程中的重要一步。

在处理深度学习这种前所未有的高性能计算要求时,人工智能研究人员需要利用力所能及的所有优势。在人工智能的推动下,GPU的处理能力迅速发展,最初设计用来渲染图像的GPU反过来又成为了推动可以改变世界的人工智能研究和开发的主要力量。为了让Fortnite这种图像渲染工具可以以每秒120帧的速度运行,需要实现诸多线性代数运算,现在,同样这些运算被部署在了计算机视觉、自动语言识别和自然语言处理等前沿应用核心的神经网络中。

现在,人工智能芯片专业化的趋势正在演变成一场军备竞赛。据Gartner预计,人工智能专用芯片的销售额将在2019年翻一番,达到80亿美元,到2023年时这一数字将增长到340亿美元。在英伟达的内部预测中,到2023年时数据中心GPU市场(几乎全部用于深度学习)规模将达到500亿美元。在接下来的五年中,亚马逊、ARM、苹果、IBM、英特尔、微软、英伟达和高通将在人工智能专用芯片上展开大量投资。参加军备竞赛的除了这些芯片巨头外,还包括一些创业型公司。据CrunchBase估计,包括Cerebras,Graphcore,Groq,Mythic AI,SambaNova Systems和Wave Computing在内的AI芯片公司已经筹集了超过10亿美元的投资。

需要说明的是,专用AI芯片是将前沿AI研究迅速转化成实际应用的催化剂,所以它很重要,也颇受欢迎。但是,大量新出现的AI芯片,一个比一个快,一个比一个专业,似乎会限制企业软件的崛起。我们可以预计,这些AI芯片公司会进行低价促销,并进行软件的专业化,以将开发人员锁定在只跟一家供应商合作。

试想一下,如果说15年前,云服务AWS,Azure,Box,Dropbox和GCP都会在一年到一年半之内上市,它们各自的任务就是锁定尽可能多的企业客户,所谓锁定是指你一旦选定了一个平台,就很难将自己的技术投资切换到另一个平台上。这种情况将发生在AI专用芯片领域,从而使得大量投入了巨资的研究都受到威胁,因为客户很难从别的平台转移到你的平台上来。

芯片制造商们肯定会向开发人员做出一些美好的承诺,而且基本上可以兑现。但是,对于AI开发人员来说,重要的是,即使其它供应商搭载了新架构的新芯片的性能更快,也很有可能会拖慢自己将产品推向市场的速度。在大多数情况下,AI模型无法在不同的芯片制造商的器件之间进行移植。所以,开发人员必须将供应商通过专用AI芯片和专业软件将自己锁牢的风险牢记在心,在过去,实际的计算引擎都已经标准化而且同质化,所以移植很方便,可以自由地在不同供应商之间切换。但是现在,在人工智能开发领域,这种情况将发生巨大变化。

将来的芯片产业很可能有超过一半营收都来自于人工智能和深度学习等应用,就像软件能够产生更多的软件一样,AI也会催生更多的AI。我们已经多次看到了这种衍生效应:公司一开始专注在一个问题上,但是最终却解决了很多问题。比如,大型汽车制造商们正在努力实现自主驾驶,他们在深度学习和计算机视觉方面开展的前沿性工作产生了连锁效应,其研究成果可以应用在福特的送货机器人等分支性项目中。

随着专用AI芯片陆续上市,目前的芯片制造商巨头和大型云服务公司可能会锁定一些客户,和他们达成独家协议,或者由于很难争取客户而只能收购那些表现出色的创业公司。AI芯片专用化的趋势将会让AI市场变得支离破碎,而不是使之趋于大一统。对于人工智能开发人员来说,现在可以做的就是,了解这个行业的发展趋势,并做些规划,权衡更快的芯片带来哪些好处,同时又带来多大的开发难度,以及在新架构上设计自己的产品的成本如何。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭