当前位置:首页 > 智能硬件 > 智能硬件
[导读]阻抗匹配(impedance matching) 主要用于传输线上,以此来达到所有高频的微波信号均能传递至负载点的目的,而且几乎不会有信号反射回来源点,从而提升能源效益。信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。

阻抗匹配(impedance matching) 主要用于传输线上,以此来达到所有高频的微波信号均能传递至负载点的目的,而且几乎不会有信号反射回来源点,从而提升能源效益。信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。

阻抗匹配技术最早应用在电气工程领域,随后的发展使其应用不再局限于此,而是广泛应用在涉及能量从源端传输到负载端的领域之中,比如声学系统、光学系统以及机械系统。在射频电路领域,阻抗匹配技术具有更重要的意义。射频功率放大器是通信器材中的核心部件,其作用是对射频功率信号进行放大。晶体管是射频功放的核心,是功率电子的重要基础,其输入输出阻抗的值只有几欧姆,但是通常的射频系统的标准阻抗是50 Ω。为了获得更好的功率传输性能,晶体管输入输出的阻抗值要匹配到标准阻抗50Ω。阻抗匹配网络的目的是为了解决功率传输时阻抗不匹配的问题,可以通过集总参数元件(比如电容、电感)或者分布参数元件(微带线)来实现,前者主要用于较低频率,后者主要用于更高的频率。在阻抗匹配电路的设计中,较为重要的因素是带宽和匹配网络的品质。 [1]

阻抗匹配的通常做法是在源和负载之间插入一个无源网络,使负载阻抗与源阻抗共轭匹配,该网络也被称为匹配网络。阻抗匹配的主要作用通常有以下几点:从源到器件、从器件到负载或器件之间功率传输最大;提高接收机灵敏度(如LNA前级匹配);减小功率分配网络幅相不平衡度;获得放大器理想的增益、输出功率(PA输出匹配)、效率和动态范围;减小馈线中的功率损耗。

输入端阻抗匹配时,传输线获得最大功率;在输出端阻抗匹配的情况下,传输线上只有向终端行进的电压波和电流波,携带的能量全部为负载所吸收。

匹配条件

①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。

②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共轭关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共轭匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达到所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

实现匹配

大体上,阻抗匹配有两种,一种是通过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

1. 改变阻抗力

把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重复以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

2. 调整传输线

由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。

阻抗匹配则传输功率大,对于一个直流电源来讲,阻抗匹配时输出效率只有50%。并且电源以对外输出最大功率为目标,不适用阻抗匹配的条件。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为 100欧姆,只是取个整而已,为了匹配方便。

阻抗匹配电路评价标准

在评价阻抗匹配电路的优劣时,会使用到如下参数指标:回波损耗、失配因子、失配损耗、品质因数和带宽。回波损耗又称为反射损耗,单位为dB,反映了由于阻抗不匹配所产生的功率反射的量,可表示为:

 

其中:

 

为由于阻抗不匹配造成的反射功率;

 

为信号源输送给匹配网络的入射功率,与负载阻抗无关。此外,射频问题经常会运用微波网络的观点进行分析,回波损耗也可以用一端口的反射系数表示,当回波损耗的值低于-10dB时,表示入射功率有90%被负载网络所吸收,可以认为达到了匹配网络的设计目标。失配因子和失配损耗是衡量阻抗匹配网络失配程度的物理量,失配因子为负载吸收的功率与入射功率的比值;失配损耗为失配因子的对数形式。如果负载吸收的功率是入射功率的90%,那么失配因子为0.9,失配损耗为0.45dB。在设计阻抗匹配电路时,经常会使用到品质因数的概念。对并联电路来说,品质因数可以表示为Q=BP/GP,其中,BP为并联电路中的电纳,GP为并联电路中的电导。对串联电路来说,品质因数可表示为Q=XS/RS,其中,XS为串联电路中的电抗,RS为串联电路中的电阻。品质因数对阻抗匹配电路具有重要意义,因为品质因数和带宽BW之间具有下列关系:BW=W/Q。表明:当品质因数Q很高时,BW会很小,此时适合设计窄带的阻抗匹配网络。如果要设计宽带的阻抗匹配网络,必须保证阻抗匹配网络的品质因数较低。

阻抗匹配电路设计

在阻抗匹配的设计方法中,思路最简单的就是解析法,通过建立阻抗变换的关系式,最终求解所需要的电容和电感。其缺点是计算量较大,当匹配元件增多时,需要计算机辅助计算。

使用谐振法设计阻抗匹配电路时,将输入阻抗(呈电感性)由串联电路的形式转换为并联的形式,然后并联一个电容性的元件和等效的并联电感产生谐振,接着交替用串联电感和并联电容形成低通滤波结构。通过这种方式,输入阻抗的实部逐步提高,直至变换到系统标准阻抗。

在高频情况下,集总电感元件的寄生效应突出,分布参数不稳定,较少被使用。此时微带线以其特有的分布参数稳定、结构简单的特点,广泛地应用在射频电路的设计中。根据微带线的特性阻抗和电长度可计算出实际微带线的长度和宽度。 [1]

应用

中压配电网阻抗匹配

中压配网电力载波通信技术是利用中压配电线路作为通信信道进行数据传输的一种通信方式,该技术不需专 设通信信道,运行费用和维护成本相对较低,拥有得天独厚的优势,其在配电自动化中的巨大作用也备受关注。 然而由于中压配电网电力线信道拓扑结构复杂、负荷时变,使得信道的输入阻抗呈现较大的差异,在通信过程中引起严重的阻抗失配问题,从而严重影响通信质量。 因此改善通信质量的方法就是中压配电网阻抗匹配,现有的单节点电力线阻抗匹配方法分为两类,一类是基于智能算法求取阻抗匹配参数,一类是通过设计耦合电路实现阻抗匹配。其中,基于智能优化的算法能获得较好匹配,并且有较高的可靠性,但是建模复杂,迭代时间长,需要专门的数字处理器,优化结果对初值依赖性较强,容易陷入局部最优。 而设计耦合电路法实际应用较多,主要通 过改变匹配网络的结构及参数值来进行阻抗匹配,但匹配精度稍差,适用范围存在一定局限性。 [3]

声表滤波器的阻抗匹配

随着移动通信的快速发展,声表滤波器的应用范围不断扩展,由于系统应用的深入,对声表滤波器的性能也提出了更高的要求。然而,在实际的射频电路应用中,出于性能运用的考虑,设计者通常将声表滤波器设计成不同的形式,将声表滤波器看作是一个网络,其对应的输入、输出就是两个端口,在实际电路中,声表滤波器需要与外部电路进行阻抗匹配,从而达到电路期望的性能。

怎样理解阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:

P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)

=U*U*R/[(R-r)*(R-r)+4*R*r]

=U*U/{[(R-r)*(R-r)/R]+4*r}

对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。例如,常用的闭路电视同轴电缆特性阻抗为75欧,而一些射频设备上则常用特征阻抗为50欧的同轴电缆。另外还有一种常见的传输线是特性阻抗为300欧的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。

因为电视机的射频输入端输入阻抗为75欧,所以300欧的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300欧到75欧的阻抗转换器(一个塑料包装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大的)?它里面其实就是一个传输线变压器,将300欧的阻抗,变换成75欧的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。

总结

电磁波传输电路必须考虑其阻抗匹配问题,只有实现了输出阻抗与负载阻抗“完美”的匹配,才能实现电磁波信号的无反射传输,实现最大功率化利用。如果电磁波传输电路中出现不匹配就会引起严重的反射,这样传输线上将形成驻波,大量的功率浪费在反射功率上,同时因反射功率过大将造成元器件的损坏,使得发射机故障率上升,也使得能量利用率降低,严重时无法实现调谐,发射机无法正常工作。 [4]

在进行有源电路设计时,如果不去考虑阻抗匹配而是直接把信号源与后级负载电路相连接,不仅会使负载端得不到最大功率输出,而且还会引起 一些诸如干扰、反射等复杂的电路问题。特别是在高频和微波电路中阻抗不匹配所带来的问题尤为明显,经电路传输的能量会反射回来产生驻波,严重时会引起馈线的绝缘层及发射机末级功放管的损坏。因此,需要在电源端与负载端之间设计一个阻抗匹配网络,把负载端的阻抗转换成与电源端阻抗相匹配的阻抗形式。电源与负载的阻抗达到匹配,这种情况下不仅可以实现最大功率传输,而且能够起到减小通带内频率信号的相位失真。

在拥有功能强大的软件和高速、高性能计算机的今天,人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。

实际上,一个真正的工程师不仅应该拥有理论知识,更应该具有利用各种资源解决问题的能力。在程序中加入几个数字然后得出结果的确是件容易的事情,当问题的解十分复杂、并且不唯一时,让计算机作这样的工作尤其方便。然而,如果能够理解计算机的工作平台所使用的基本理论和原理,知道它们的由来,这样的工程师或设计者就能够成为更加全面和值得信赖的专家,得到的结果也更加可靠。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

一致功率的逆变器工频会重于高频逆变器,高频逆变器的体型较小,较轻,效率较高,空载负荷较低,但不能够接满负荷的感性负载,过载能力相对比较差。

关键字: 高频 工频 逆变器

在电路中,耦合是指将前级电路(或信号源)的输出信号送至后级电路(或负载)的过程。这种连接方式主要用于实现不同电路之间的信号传输和能量的转移。耦合的主要方式有阻容耦合、直接耦合和变压器耦合等。其中,阻容耦合是通过电容器实现...

关键字: 电源电路 阻抗匹配

电压跟随器是一种在电路中起到关键作用的电子器件。它常常被用于缓冲、隔离和放大电压,以提高电路的性能和稳定性。

关键字: 电压跟随器 阻抗匹配

连接器在各个领域中的应用非常活跃,而且连接器的种类规格也是五花八门,很多采购在挑选合适的连接器时都会觉得很伤脑筋。

关键字: 连接器 阻抗匹配 LCP绝缘

仪表放大器(英语:instrumentation amplifier或称精密放大器简称INA),差分放大器的一种改良,具有输入缓冲器,不需要输入阻抗匹配,使放大器适用于测量以及电子仪器上。

关键字: 仪表 放大器 阻抗匹配

反激式变压器是一种常见的电力转换器,它具有简单、紧凑和高效等优点,在许多电子设备和系统中得到广泛应用。本文将介绍反激式变压器的特点以及开关电源电路的设计。

关键字: 反激式变压器 开关电源 高频

电子变压器(PowerElectronicTransformer,PET)又称电子电力变压器,是一种通过电力电子技术实现能量传递和电力变换的新型变压器。对现有的电力电子变压器拓扑结构进行分析和总结,可以对电力电子变压器作...

关键字: 电子变压器 高频 电源

汽车胎压传感器很多人不熟悉,涉及到低频和高频两个部分。Microchip的这篇文档涵盖了从base station到transponder的所有参考设计,虽然随着半导体工艺的发展,现在已经用不到这颗芯片,但是设计原理肯定...

关键字: 传感器 TPMS 高频

MOSFET/IGBT的开关损耗测验是电源调试中非常关键的环节,但很多工程师对开关损耗的测量还停留在人工计算的感性认知上,PFC MOSFET的开关损耗更是只能依据口口相传的经验反复摸索,那么如何用示波器测试MOS管功率...

关键字: MOSFET波形 功率损耗

滤波在几乎所有通信系统中都起着重要作用,因为消除噪声和失真会增加信道容量。设计一个仅通过所需频率的滤波器相当容易。然而,在实际的物理滤波器实现中,通过滤波器会损失所需的信号功率。这种信号损失对模数转换器(ADC) 噪声系...

关键字: ADC滤波 阻抗匹配
关闭
关闭