当前位置:首页 > 电源 > 功率器件
[导读]电池是便携式系统应用的典型电源,并且目前基于微控制器的便携式系统也不少见。各种微控制器均工作于低电源电压(如1.8V)。因此人们能采用两节AA或AAA电池为电路供电。但是,如果电路需要更高电压——例如LCD的LED背

电池是便携式系统应用的典型电源,并且目前基于微控制器的便携式系统也不少见。各种微控制器均工作于低电源电压(如1.8V)。因此人们能采用两节AA或AAA电池为电路供电。但是,如果电路需要更高电压——例如LCD的LED背光照明,它需要大约7.5VDC,则必须采用合适的DC/DC转换器把电源电压从3V提升至需要的电压。不过借助几个额外的分立元件,人们也可采用微控制器开发合适的DC/DC升压转换器(参考文献1)。

          

本设计实例介绍如何用一个微型8引脚微控制器和几个分立元件来创建两个(而不只是一个)DC/DC转换器。该设计方案可伸缩,人们只须改变微控制器的控制软件,就能使它适应多种输出电压要求。人们甚至能对微控制器编程生成任何必要的输出电压启动速率。图1描绘了升压开关稳压器的基本拓扑结构。此类稳压器中的输出电压大于输入电压。升压开关稳压器工作于CCM(连续导电模式)或DCM(非连续导电模式)。更容易为DCM工作模式设置电路(参考文献2)。该名称源于以下事实:在DCM中的每个PWM期间,电感电流降至0A并持续一段时间;在CCM中,电感电流从不为0A。在PWM输出端的高电平周期结束时(此时开关接通),最大电流流经电感,大小为:

                    (1)

其中VDC为输入电压,D为占空比,T为总周期时间,L为电感值。流经二极管的电流在TR时间内降至零。

                       (2)

负载电流为平均二极管电流,

                       (3)

根据式(1)和式(2),简化为:

                     (4)

输出电压VOUT为:

                               (5)

输出电容的值决定了纹波电压,电容值为:

                                (6)

其中dV/dt表示PWM信号期间的输出电压降,I为负载电流,C为必要的输出电容。

PWM波的总周期为T,并为系统常量。D为PWM波的占空比,而TR为二极管导电时间。在TR结束时,二极管电流降至0A。对于DCM,T>D×T+TR。PWM周期T与(D×T+TR)的差值为死区。

操作电感的开关通常是BJT(双极结晶体管)或MOSFET。MOSFET是首选,这是因为它能处理大电流,效率更高,并且开关速度更快。但是在低压时,很难找到栅极至源极阈值电压足够低的合适MOSFET,并且可能很贵。因此本设计使用BJT(图2)。

           

微控制器提供的PWM频率为10kHz至超过200kHz。期望较高的PWM频率,这是因为它带来较低的电感值,这就能使用小电感。Atmel公司的Tiny13AVR微控制器具有“快速”PWM模式,频率约为37.5kHz,分辨率为8比特。更高的PWM分辨率使人们能更密切地跟踪期望的输出电压。对于20mH电感,来自式(1)的最大电感电流为0.81A。开关该电感的晶体管的最大集电极电流应大于该值。2SD789NPN晶体管的集电极电流极限为1A,因此适合于这种DC/DC转换器。根据式(4),可由这些值实现的最大负载电流为54mA,因此满足了7.5V输出电压的最大需要负载电流要求。

Tiny13微控制器具有两条高速PWM通道和四条10比特ADC通道。另一条PWM通道和一条ADC通道为15V输出电压和15mA最大负载电流创建了第二个DC/DC转换器。该转换器的电感器的值为100mH。要计算输出电容值,应使用式(6)。对于5mV纹波,用于7.5V输出电压的电容器的值为270mF,由于输出电流为50mA且PWM时间周期为27ms,因此该电路使用最接近的较大值330mF。与此类似,对于15V输出电压,需要的电容值为81mF,因此设计使用100mF电容。

微控制器所用的程序是C语言,并使用开放源代码AVRGCC编译器(www.avRFreaks.net)。在没有内部时钟分频器的情况下,AVRTiny13微控制器工作于9.6MHz内部时钟频率,因此PWM频率为9.6MHz/256=37.5kHz。内部参考电压为1.1V。主程序交替读取ADC的两条通道,后者在中断例程中监视输出电压。主程序执行无穷循环,通过读取ADC值监视输出电压,并相应调整PWM值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在下述的内容中,小编将会对MCU微控制器的相关消息予以报道,如果MCU微控制器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: MCU 微控制器 智能控制

今天,小编将在这篇文章中为大家带来MCU微控制器的有关报道,通过阅读这篇文章,大家可以对MCU微控制器具备清晰的认识,主要内容如下。

关键字: MCU 微控制器 物联网

MCU微控制器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对MCU微控制器的相关情况以及信息有所认识和了解,详细内容如下。

关键字: MCU 微控制器 芯片

一直以来,MCU微控制器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来MCU微控制器的相关介绍,详细内容请看下文。

关键字: MCU 微控制器 控制器

在这篇文章中,小编将对MCU微控制器的相关内容和情况加以介绍以帮助大家增进对MCU微控制器的了解程度,和小编一起来阅读以下内容吧。

关键字: MCU 微控制器 芯片

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便...

关键字: 单片机 微控制器 芯片

比赛邀请社区成员使用Maxim Integrated的评估套件探索并构建手势传感项目

关键字: e络盟 传感器 微控制器

GD32F310K是一款基于 Arm® Cortex®-M4 RISC 内核的32 位通用微控制器。GD32F310系列MCU最高主频可达72MHz并支持DSP指令运算。配备了64KB的内置Flash及48KB的SRAM...

关键字: 微控制器 DSP指令运算 芯片

ISL78220 6 相控制器适用于需要高效率 (>95%) 和高功率的应用。多相升压转换器架构使用交错时序来倍增通道纹波频率并降低输入和输出纹波。更低的纹波导致更少的输入/输出电容器,因此更低的组件成本和更小的实现面积...

关键字: DCDC 升压转换器

关于为当今许多 PC 板和系统提供电源轨,有好消息也有坏消息。首先,好消息是:现在在基于线性(低压差或 LDO)和开关架构的 DC/DC 稳压器和转换器中有许多出色的选择。因此,找到一个具有合适的属性组合的人比以往任何时...

关键字: DC/DC 多轨拓扑电源

功率器件

12198 篇文章

关注

发布文章

编辑精选

技术子站

关闭