当前位置:首页 > 电源 > 功率器件
[导读]功率器件有多种不同的短路模式,其中最严重的一种是桥臂短路,在这种短路模式下,电流迅速上升,同时器件承受母线电压。我们需要首先对这种短路模式下的MOSFET的行为进行研

功率器件有多种不同的短路模式,其中最严重的一种是桥臂短路,在这种短路模式下,电流迅速上升,同时器件承受母线电压。我们需要首先对这种短路模式下的MOSFET的行为进行研究。

短路测试平台如图1所示。测试驱动板由英飞凌专为单管SiC MOSFET研发。待测器件为TO-247 4pin封装的IMZ120R045M1。测试在室温下进行。

 

 

 

 

图1 SiC功率MOSFET短路特性测试平台及测试线路

图2 为400V和800V两种母线电压下,且门极电压在12V,15V,18V情况下的短路电流波形。短路起始阶段,漏极电流快速上升并且到达最高值,在门极电压分别为12V和15V情况下,电流峰值分别为170A和270A。

电流峰值过后,漏极电流开始显着下降,门极电压为12V和15V的情况下分别为130A和180A。

这是因为载流子迁移率随温度的上升而下降,从而短路电流下降。测试波形证实了TO-247封装的4pin CoolSiC? MOSFET 在15V门极驱动电压条件下,拥有至少3us的短路能力。

短路脉冲结束后,可能发生两种情况:1)被测器件安全关断,漏极电流降至0A。

2)短路期间积累的能量超出了器件极限,比如门极驱动电压过高或者母线电压过高,都可能引起热失控,导致器件失效,如图2(b)中绿线所示。这条曲线表示的是母线电压800V,门极电压为18V的情况下,在短路脉冲延长到4us时,器件发生失效。

 

 

图2 IMZ120R045M1在不同门极电压下的短路电流波形(a) Vdc=400V (b)Vdc=800V

从图2中我们可以看出,短路电流与门极电压成正相关,更高的门极电压导致更高的短路电流,因此引起更高的结温与更低的载流子迁移率。因此高门极电压下的Id下降幅度会更大。

图3显示了IMZ120R045M1 在15V门极电压,以及400V及800V母线电压下的短路电流。从中可以看出,母线电压对峰值电流影响很小。

当芯片开始被加热之后,800V母线电压会产生更多的能量,导致芯片结温高于400V母线电压的情况,因此VDC=800时,漏极电流下降更快,峰值过后很快低于400V VDC。

 

 

图3 IMZ120R045M1在不同母线电压下的短路电流

SiC MOSFET 短路保护方法

目前有4种常用的短路检测及保护方法,其原理示意图如图4所示。其中最直接的方式就是使用电流探头或者分流电阻检测漏极电流。业界最常用的方法是检测饱和压降。

MOSFET正常导通时漏极电压约为1~2V。短路发生时,短路电流会迅速上升至饱和值,漏极电压也会上升至母线电压。一旦测试到的Vds高于预设的参考值,被测器件会被认为进入短路状态。

另一个典型的短路检测解决方案是监测di/dt. 在高功率IGBT模块中,开尔文发射极与功率发射极之间存在寄生电感。在开关操作中,变化的电流会在电感两端产生电压VeE。通过检测这个电压,即可以判断器件是否进入短路状态。

导通状态下,Vds检测需要一定的消隐时间防止误触发。另外,基于di/dt的检测方式依赖于寄生电感LeE的值。除此之外,短路检测还可以通过检测门极电荷的特性来实现。

短路发生时,门极波形不同于正常开关波形,不存在米勒平台。这种方法不需要消隐时间,也不依赖LeE。

 

 

图4 4种SiC MOSFET的短路检测及保护方法

快速短路保护电路搭建及测试波形

a) 测试平台搭建

SiC MOSFET 短路保护电路通过英飞凌Eicedriver 1ED020I12-F2实现。1ED020I12-F2采用无磁芯变压器技术来隔离信号,短路保护通过退饱和检测功能实现。1ED020I12-F2可以提供高达2A的输出电流,因此可以直接驱动SiC MOSFET,无需推挽电路。

评估板通过隔离变压器给高边和低边分别提供隔离电源。评估板上有吸收电容,用来抑制电压过冲。待测器件通过一根短线缆实现桥臂短路,杂散电感预估为100nH.

为了实现快速保护,使用66pF的电容将消隐时间设定在约2us,触发电平由driver IC内部设置并固定在9V。另外,一个2~3k?的电阻Rx也可以用来加速短路的识别速度,但本次测试中没有使用。

 

 

 

 

图5 基于IMW120R045M1 (TO-247-3pin)与1ED020I12-F2的短路测试平台

b) 测试波形与结果

在测试波形中有4路信号,CH1是1ED020I12-F2 desat引脚处测得的电压信号,CH2是由罗氏线圈PEM CWT-3B测得漏极电流。CH3与CH4分别为漏源电压(Vds)与栅源电压(Vgs),测试波形如图6所示。

短路电流初始尖峰值达到250A。1ED020I12-F2’s DESAT引脚电压在短路开始后呈线性上升,在大约2us时到达9V,然后驱动芯片开始关断输出,将驱动电压下拉至负值,SiC MOSFET成功地在2.5us之内成功关断。

 

  图6 基于IMW120R045M1 (TO-247-3pin)与1ED020I12-F2的短路测试波形

 

结论:

在实际应用中,门极电压对于驱动SiC MOSFET来说非常重要,尽管更高的驱动电压可以带来降低RDSON的好处,但是较高的门极电压会带来更高的短路电流。

通过测试我们可以看到,对于IMZ120R045M1,在母线电压800V,栅极电压18V,短路脉冲4us的情况下,器件会出现短路失效。因此,出于导通特性与栅氧化层寿命及短路保护的折衷考虑,我们依然推荐15V的正驱动电压。

SiC MOSFET 与IGBT相比短路耐受时间比较短。但是,选择合适的驱动IC及外围电路设置,SiC MOSFET依然能在短路时安全关断,从而构建非常牢固与可靠的系统。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

稳压器只能起到稳定直流电压的作用,它无法改变交流电压的大小和方向,也就无法替代变压器的作用。而变压器虽然自身并没有稳压功能,但是却能够改变电压大小和方向,使得电力设备能够正常传输和分配。

关键字: 稳压器 电压

自举电路(Bootstrap Circuit)是一种在电子电路中广泛应用的升压技术,其核心作用是通过电路自身的工作状态提升某个节点的电压,而无需增加外部电源电压。

关键字: 自举电路 电压

电路保护的意义在于保护电子电路中的元件免受过电压、过电流、浪涌和电磁干扰等有害因素的影响,从而防止设备损坏,确保电子设备的安全和稳定运行‌‌。

关键字: 电路保护 电压

在电子电路中,负电压的产生通常需要一种特殊的电路配置。然而,有一个简单的方法可以获得负电压,那就是利用运算放大器(Op-Amp)和地线。具体来说,你可以将运算放大器配置为一个反相放大器,其输入端接地,并通过适当的电阻和电...

关键字: 电压 运算放大器

一直以来,变压器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来变压器的相关介绍,详细内容请看下文。

关键字: 变压器 电压 减容

本文中,小编将对稳压器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 稳压器 功率

在实际应用中,高压输电通常采用升压变压器将电能升压至数十万伏甚至更高,以减少在输电过程中的电能损耗,并提高输电效率。例如,在我国,送电距离在200-300公里时采用220千伏的电压输电;在100公里左右时采用110千伏;...

关键字: 电压 电网

锂电池多次筛选的关键原因是内阻的重要性‌。锂电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,包括欧姆内阻和极化内阻‌。内阻的大小直接影响电池的性能和寿命。

关键字: 电压 锂电池

今天,小编将在这篇文章中为大家带来摇表的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 摇表 电阻 电压

上海 2025年6月10日 /美通社/ -- MPS芯源系统(NASDAQ代码:MPWR)近期发布了两款新产品:NovoOne开关MPXG2100系列和PFC稳压器MPG44100系列,旨在为快速发展的快速充电市场、工...

关键字: ACDC 高集成 PS 电压
关闭