在 PCB 上具有比所需组件更热的组件是很常见的。通常,控制此类组件热量的方法是 (a) 在其下方创建一个尽可能坚固的铜焊盘,然后 (b) 在焊盘与焊盘下方某处的导热表面之间放置通孔。这种通孔称为“热通孔”。这个想法是热通孔将热量从焊盘传导出去,从而有助于控制热元件的温度。
IC封装依靠PCB来散热。一般而言,PCB是高功耗半导体器件的主要冷却方法。一款好的PCB散热设计影响巨大,它可以让系统良好运行,也可以埋下发生热事故的隐患。谨慎处理PCB布局、板结构和器件贴装有助于提高中高功耗应用的散热性能。
USB-C是什么?USB-C是一种接口样式。在已有的USB 3.1标准中,有三种接口样式:一个是Type-A(即Standard-A,传统计算机上最常见的USB接口样式);一个是Type-B(既Micro-B,目前大部分Android智能手机使用的接口样式);另外一个就是本文的主角Type-C了。
随着COVID-19在 2020 年初的传播,全球紧急呼吸机短缺是最大的担忧之一。对呼吸机不断增长的需求意味着它们很快就会供不应求,因此 Monolithic Power Systems (MPS) 的一个设计工程师团队寻求帮助创建解决这一危机的解决方案。
虽然定制印刷的 PCB 可以将这些组件集成在一块板上,但 MPS 解决方案利用每个产品的预制、现成的评估板来缩短开发时间,同时创建一个紧凑的解决方案。
随着世界不断发展以保持万物互联,无线传感器在物联网 (IoT) 市场中变得越来越流行。物联网存在多种定义,但其中一种只是简单地将其定义为通过使用远程传感器测量环境来与我们的周围环境保持同步。
在工厂自动化中使用的可编程逻辑控制器 (PLC)是任何工业自动化设计的基本必需品。简而言之,它们是专门用于控制机器和过程的工业计算机,设计用于在恶劣的工业环境中工作。
许多较小的汽车电子子系统从同轴电缆接收电力。这种电缆结合了电力和数据传输,以减少所需的电缆数量。这种电缆减少减少了额外子系统的额外重量和成本。新车中出现的众多摄像头经常使用这种“同轴电缆供电”方案为摄像头提供几瓦的功率。
许多工业和汽车应用具有广泛变化的输入电压 (V IN ) 轨,并且通常需要降压-升压 DC/DC 转换器来调节输出电压 (V OUT )。降压-升压 DC/DC 转换器可以是级联降压和升压级或单级。级联降压和升压级会导致双重转换,从而导致更高的尺寸、成本和功率损耗。
如果我们错过 了本系列的第 1 部分 ,我将讨论 BLDC 电机驱动器中逐周期过流保护的必要性以及如何检测电机绕组电流。在第 2 部分中,我将讨论如何通过检测直流总线电流和使用超低功耗微控制器来实现逐周期过流保护。 TI 的超低功耗 MSP430F5132 微控制器有助于逐周期控制电机绕组电流,无需任何软件中断干预。 我们可以将高带宽精密 OPA374 配置为单端差分放大器,以放大连接在直流总线返回路径中的检测电阻 R SENSE上的压降。
无刷直流 (BLDC) 电机因其高效率、高扭矩重量比、低维护和长寿命而广受欢迎。三相无刷直流电机由三相绕线定子和带有永磁体的转子组成。BLDC 电机中没有电刷,因此需要使用电子驱动器来正确换向电机绕组中的电流。
一直以来,TI 建议使用Fly-Buck ™ 拓扑(或隔离降压拓扑)来简化工业和通信应用的隔离偏置设计。Fly-Buck 设计将耦合绕组添加到电感器,以提供单个或隔离的偏置电源,而无需光耦合器。LM5017系列使用简单,降低了物料清单 (BOM) 成本并提高了性能,这就是它在过去几年中广受欢迎的原因。
在这篇文章中,我将介绍用于模拟 Vdd (AVDD) 和数字 Vdd (DVDD) 电源的 DC/DC 转换器。了解 ADC 电源引脚如何对 DC/DC 转换器作出反应至关重要,因为 DC/DC 转换器因其高功率效率而成为大多数(如果不是全部)供电方案的一部分。
我们都做过,把手机充电器留在家里或办公桌上,但手机本身就在我们的口袋或手中。没什么大不了的,对吧?实际上,这是一件大事。当我们意识到有数百万个这样的充电器时,基本上什么都不做的未使用充电器消耗的功率相当可观,消耗了大约 10% 的国内功率消耗。
ISL9203A 是一款集成式单节锂离子或锂聚合物电池充电器,能够在低至 2. 4V 的输入电压下工作。该充电器设计用于各种类型的交流适配器