当前位置:首页 > 电源 > 电源电路
[导读]CAN是一种用于实时应用的串行通讯协议总线,CAN能够使用双绞线来传输信号,是国际上应用最广泛的现场总线之一。CAN总线的传输方式是串行数据传输,能够在1Mb/s的速率40m的双绞线上运行,还能够使用光缆连接。CAN在细节上很多地方与I2C总线差不多,不过也有一些区别比较明显。CAN总线用报文形式广播的方式从一个节点向另一个节点发送数据。对于节点来说,不管这个数据是发到哪里的,自己都要接收。

CAN是一种用于实时应用的串行通讯协议总线,CAN能够使用双绞线来传输信号,是国际上应用最广泛的现场总线之一。CAN总线的传输方式是串行数据传输,能够在1Mb/s的速率40m的双绞线上运行,还能够使用光缆连接。CAN在细节上很多地方与I2C总线差不多,不过也有一些区别比较明显。CAN总线用报文形式广播的方式从一个节点向另一个节点发送数据。对于节点来说,不管这个数据是发到哪里的,自己都要接收。

当一个节点要发送数据的时候,这个节点将要发送的数据和标识符发送给本节点的CAN芯片,并且会进入准备状态。当这个CAN小品收到总线分配后,会改变成发送报文状态。CAN芯片将数据组成报文格式发出后,其他的节点都会处于接收状态。全部节点都会对这段报文进行接收检测来判断这些报文是不是发给自己的。

在这篇文章中,我将重点介绍用于驱动这些总线电压的 CAN 驱动器输出级的典型拓扑。对于曾经在 CAN 网络中遇到过发射问题或输出差分电压问题的任何人,本文描述了驱动器的工作原理以及您可以在数据表中查看哪些电气参数来识别良好的收发器。我相信对 CAN 驱动程序的基本了解也有助于调试出现的 CAN 问题。

像TCAN332这样的 CAN 收发器通常具有等效的双输出结构,如图 1 所示。高侧输出结构由串联二极管和 P 沟道晶体管组成,而低侧输出结构由串联二极管组成和一个N沟道晶体管。在高端,如果 CANH 总线电压在任何瞬态或共模干扰期间超过 V CC,则串联二极管阻止电流流入 V CC网络。如果总线电压在瞬态和共模干扰期间降至收发器的本地接地以下,则低端上的串联二极管会阻止电流从接地流出到 CAN 总线。


了解 CAN 总线驱动程序的内部工作原理以及如何调试系统

图 1:CAN 收发器的等效输出原理图

根据 ISO 11898 CAN 标准,CAN 总线的两种有效状态是:

· 显性状态——最小 1.5V 输出差分电压 ( VOD) 进入 50-65Ω 差分负载(TXD = 低)。

· 隐性状态——最大 50mV V OD进入 50-65Ω 差分负载(TXD = 高)。

如图 2 所示,当高端和低端晶体管都关闭并处于高阻抗状态时,驱动器是隐性的。当高侧和低侧晶体管都打开并处于低阻抗状态时,驱动器占主导地位。


了解 CAN 总线驱动程序的内部工作原理以及如何调试系统

图 2:隐性和显性状态

由于两个晶体管都在隐性状态下关闭(参见图 2 的左侧),因此从 V CC流向地的电流可以忽略不计。负载电阻 (R L ) 上的 V OD非常接近 0V。在主导状态(图 2 的右侧),两个晶体管都处于导通状态并处于低阻抗状态。因此,电流将从 V CC流经 R L到地并产生 V OD。

正如我在之前的博客中所说,CANH 和 CANL在隐性状态下弱偏向 V CC /2。为避免在器件在隐性和显性状态之间切换时产生共模干扰,重要的是使 CANH 的驱动强度与 V CC和 CANL 与地相匹配。查看图 3,您可以看到 P 沟道和 N 沟道晶体管的良好匹配的漏源导通电阻 (R DSON ) 将V CC和 GND之间的 R L上的电压降集中在 V抄送/2。

如果驱动器的一半具有比另一半低得多的导通电阻,则总线共模电压将在显性状态下从 V CC /2拉开,在隐性状态下拉回到 V CC /2 . 这将导致总线状态的每次转换都发生共模转换,从而导致更高水平的传导和辐射发射。


了解 CAN 总线驱动程序的内部工作原理以及如何调试系统

图 3:使用 R DSON电阻值的等效原理图

在查看驱动器电气规格时,要寻找的两个最重要的事情是在给定负载电阻的显性和隐性状态下保证的输出电压(更强的驱动器将保证具有更低电阻的输出电压)以及显性和隐性之间的驱动器对称性状态。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

在电子电路设计中,确保电源的稳定和安全至关重要。LTC4365 作为一款出色的过压(OV)、欠压(UV)以及反向极性故障保护控制器,在众多领域得到了广泛应用。其能够为电源输入电压可能出现过高、过低甚至负值的应用场景提供可...

关键字: 控制器 栅极 输出电压

电容,作为电路设计中不可或缺的器件,以其独特的功能和广泛的用途,在电子领域扮演着举足轻重的角色。它不仅是一种无源元件,更在多个方面发挥着关键作用,如旁路、去耦、滤波以及储能等。

关键字: 电容

这个项目需要到目前为止在这门课上学到的所有编码知识。虽然我对我所取得的进步感到非常高兴,但仍有很多事情可以做得更好!我对这个项目的指导原则之一是制作一个向前种植的雕塑作品,电子设备尽可能地隐藏起来。

关键字: BME280 Adafruit仪表板 SSD1306

频繁的减载或断电可能会破坏你的互联网,小型直流电器,甚至是基本的微型逆变器设置。手动切换到电池供电是不方便的,并且会由于突然断电而损坏敏感的电子设备。

关键字: 逆变器 ESP8266 继电器

M5Stack为各种应用提供广泛的控制器-从超紧凑的Stamp和Atom到更强大的Core系列,具有可堆叠模块。然而,直到最近,还没有专门为工业环境等要求更高的环境设计的设备。这就是StamPLC的用之之道:一个配备继电...

关键字: PLC Wi-Fi 继电器

在电子设备的世界里,稳定的电源供应如同基石,支撑着各种电路和器件的正常运行。线性稳压电源和开关稳压电源作为两种主流的电源类型,各自有着独特的工作方式、性能特点以及适用场景。深入了解它们,对于电子工程师进行合理的电源选型和...

关键字: 线性稳压 开关稳压 电源

在现代科技飞速发展的时代,电子产品已广泛渗透到人们生活和工业生产的各个角落。从日常使用的手机、电脑,到工业生产中的各类精密设备,都离不开稳定可靠的电源供应。而开关电源系统作为电子产品的核心供电部件,其性能与稳定性至关重要...

关键字: 开关电源 雷电 浪涌

在全球倡导节能减排的大背景下,家电产品的能耗问题日益受到关注。电视机作为家庭中使用频率较高的电器之一,其能耗的降低对于节约能源和减少碳排放具有重要意义。LED 驱动技术作为影响电视机能耗的关键因素,正不断发展和创新,为实...

关键字: 驱动技术 能耗 LED

随着电力技术的不断发展,大功率非晶态变压器因其独特的优势,如低损耗、高导磁率等,在众多领域得到了广泛应用。然而,磁偏饱和问题严重影响了大功率非晶态变压器的性能与稳定性,成为制约其进一步推广应用的关键因素。因此,深入研究并...

关键字: 大功率 变压器 非晶态

在以太网供电(PoE)技术向高功率演进,受电设备(PD)的硬件开发面临效率与安全性的双重挑战。IEEE 802.3bt标准将单端口供电能力提升至90W,要求PD设备在实现高效率DC-DC转换的同时,必须具备完善的过压保护...

关键字: DCDC PoE
关闭